CPGL: Prediction of Compound-Protein Interaction by Integrating Graph Attention Network With Long Short-Term Memory Neural Network

概化理论 稳健性(进化) 人工智能 深度学习 计算机科学 机器学习 人工神经网络 图形 短时记忆 循环神经网络 理论计算机科学 生物 基因 数学 生物化学 统计
作者
Minghua Zhao,Min Yuan,Yaning Yang,Steven Xu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 1935-1942 被引量:14
标识
DOI:10.1109/tcbb.2022.3225296
摘要

Recent advancements of artificial intelligence based on deep learning algorithms have made it possible to computationally predict compound-protein interaction (CPI) without conducting laboratory experiments. In this manuscript, we integrated a graph attention network (GAT) for compounds and a long short-term memory neural network (LSTM) for proteins, used end-to-end representation learning for both compounds and proteins, and proposed a deep learning algorithm, CPGL (CPI with GAT and LSTM) to optimize the feature extraction from compounds and proteins and to improve the model robustness and generalizability. CPGL demonstrated an excellent predictive performance and outperforms recently reported deep learning models. Based on 3 public CPI datasets, C.elegans, Human and BindingDB, CPGL represented 1 - 5% improvement compared to existing deep-learning models. Our method also achieves excellent results on datasets with imbalanced positive and negative proportions constructed based on the C.elegans and Human datasets. More importantly, using 2 label reversal datasets, GPCR and Kinase, CPGL showed superior performance compared to other existing deep learning models. The AUC were substantially improved by 20% on the Kinase dataset, indicative of the robustness and generalizability of CPGL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色德天完成签到,获得积分10
1秒前
1秒前
Lisby发布了新的文献求助10
2秒前
3秒前
熊熊熊发布了新的文献求助10
3秒前
4秒前
茼蒿完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助Puffkten采纳,获得10
5秒前
6秒前
cuicui发布了新的文献求助10
6秒前
trussie发布了新的文献求助10
6秒前
威朗普完成签到,获得积分20
7秒前
养不活的细胞完成签到,获得积分10
8秒前
紫薇发布了新的文献求助10
9秒前
充电宝应助王jj采纳,获得10
10秒前
华仔应助畅快的草莓采纳,获得10
12秒前
樊舒豪发布了新的文献求助10
12秒前
猪四郎完成签到,获得积分10
13秒前
13秒前
情怀应助优秀星星采纳,获得10
13秒前
13秒前
Hello应助土豪的糜采纳,获得10
14秒前
甘宁发布了新的文献求助10
14秒前
针真滴完成签到 ,获得积分10
17秒前
17秒前
阳光千筹完成签到 ,获得积分10
18秒前
繁星长明完成签到,获得积分10
18秒前
19秒前
20秒前
大模型应助faaami采纳,获得10
20秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
vidi发布了新的文献求助10
23秒前
trussie完成签到,获得积分10
23秒前
王jj完成签到,获得积分10
24秒前
24秒前
欢喜的火龙果完成签到,获得积分10
25秒前
25秒前
王jj发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637725
求助须知:如何正确求助?哪些是违规求助? 4743904
关于积分的说明 15000090
捐赠科研通 4795864
什么是DOI,文献DOI怎么找? 2562227
邀请新用户注册赠送积分活动 1521731
关于科研通互助平台的介绍 1481704