Inferring Unsteady Wake Flow Fields From Partial Data by Physics-Informed Neural Networks

雷诺数 人工神经网络 唤醒 流量(数学) 均方误差 噪音(视频) 平均流量 应用数学 计算机科学 数学 统计物理学 算法 物理 人工智能 机械 统计 湍流 图像(数学)
作者
Chang Yan,Shengjun Ju,Dilong Guo,Guowei Yang,Shuanbao Yao
标识
DOI:10.1115/fedsm2022-86945
摘要

Abstract Massive differential numerical computations are necessary in Computational Fluid Dynamics. In addition, the experimental results are generally noisy. Consequently, traditional methods cannot get unsteady flow fields immediately and precisely. In this research, the inferences of unsteady wake flow fields at different Reynolds numbers by Physics-Informed Neural Networks (PINNs) are studied. Unlike typical neural networks whose loss function consists of Mean Square Error only, the loss function of PINNs consists of Mean Square Error and the sum of squares of residuals of the flow governing equations. The flow governing equations are introduced to the neural networks as a regularization of the loss function. The existence of regular term reduces the dependence on labeled data during training. Then the PINNs is trained with very little labeled data (5% of the full field). After being trained, the PINNs show excellent performance in inferring the unsteady wake flow fields. When the Reynolds number is 1e2, the Mean Absolute Error (MAE) of the reconstructed velocity field is on the order of 1e−4. Meanwhile, the MAE increases with the increase of Reynolds number. In addition, even if the random noise of the training set is introduced up to 20%, the result is still acceptable, which demonstrates the great anti-noise ability of physics-informed neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
酒剑仙完成签到,获得积分10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
xxfsx应助科研通管家采纳,获得10
1秒前
Ari_Kun完成签到,获得积分10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
sevenhill应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
xxfsx应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得30
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
星辰大海应助酱子采纳,获得10
2秒前
2秒前
2秒前
斧王应助儒雅的山河采纳,获得10
2秒前
2秒前
小兔子乖乖完成签到 ,获得积分10
3秒前
lucas发布了新的文献求助10
3秒前
Ava应助yang采纳,获得10
4秒前
4秒前
einsmay完成签到 ,获得积分10
4秒前
开放念云发布了新的文献求助10
4秒前
陈七发布了新的文献求助10
4秒前
文静千凡完成签到,获得积分10
5秒前
光夜完成签到,获得积分10
5秒前
苹果洋葱发布了新的文献求助10
5秒前
霅霅发布了新的文献求助10
7秒前
清茶韵心发布了新的文献求助10
7秒前
zwb完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462397
求助须知:如何正确求助?哪些是违规求助? 4567107
关于积分的说明 14308810
捐赠科研通 4492907
什么是DOI,文献DOI怎么找? 2461315
邀请新用户注册赠送积分活动 1450358
关于科研通互助平台的介绍 1425794