Inferring Unsteady Wake Flow Fields From Partial Data by Physics-Informed Neural Networks

雷诺数 人工神经网络 唤醒 流量(数学) 均方误差 噪音(视频) 平均流量 应用数学 计算机科学 数学 统计物理学 算法 物理 人工智能 机械 统计 湍流 图像(数学)
作者
Chang Yan,Shengjun Ju,Dilong Guo,Guowei Yang,Shuanbao Yao
标识
DOI:10.1115/fedsm2022-86945
摘要

Abstract Massive differential numerical computations are necessary in Computational Fluid Dynamics. In addition, the experimental results are generally noisy. Consequently, traditional methods cannot get unsteady flow fields immediately and precisely. In this research, the inferences of unsteady wake flow fields at different Reynolds numbers by Physics-Informed Neural Networks (PINNs) are studied. Unlike typical neural networks whose loss function consists of Mean Square Error only, the loss function of PINNs consists of Mean Square Error and the sum of squares of residuals of the flow governing equations. The flow governing equations are introduced to the neural networks as a regularization of the loss function. The existence of regular term reduces the dependence on labeled data during training. Then the PINNs is trained with very little labeled data (5% of the full field). After being trained, the PINNs show excellent performance in inferring the unsteady wake flow fields. When the Reynolds number is 1e2, the Mean Absolute Error (MAE) of the reconstructed velocity field is on the order of 1e−4. Meanwhile, the MAE increases with the increase of Reynolds number. In addition, even if the random noise of the training set is introduced up to 20%, the result is still acceptable, which demonstrates the great anti-noise ability of physics-informed neural networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Nickname发布了新的文献求助200
2秒前
ann发布了新的文献求助10
2秒前
CipherSage应助MU采纳,获得50
2秒前
Yuan完成签到,获得积分10
4秒前
hx666发布了新的文献求助10
5秒前
橙花发布了新的文献求助10
6秒前
西蜀小吏发布了新的文献求助10
6秒前
李爱国应助17采纳,获得10
7秒前
7秒前
7秒前
Frieren完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Akim应助enen采纳,获得10
9秒前
9秒前
深情安青应助momobobi采纳,获得20
9秒前
失眠翠芙完成签到,获得积分10
10秒前
ting5260发布了新的文献求助10
10秒前
李世航完成签到 ,获得积分20
10秒前
Owen应助自由寻冬采纳,获得10
12秒前
向日葵发布了新的文献求助10
14秒前
Gotye0829完成签到,获得积分10
14秒前
14秒前
aa完成签到,获得积分10
14秒前
李世航关注了科研通微信公众号
15秒前
LCY发布了新的文献求助10
15秒前
hsa_ID发布了新的文献求助10
15秒前
王肖宁完成签到,获得积分10
16秒前
李健应助ting5260采纳,获得10
17秒前
18秒前
芒go发布了新的文献求助10
18秒前
充电宝应助小昊采纳,获得10
18秒前
aa发布了新的文献求助20
20秒前
量子星尘发布了新的文献求助10
20秒前
xxfsx应助kmkz采纳,获得10
21秒前
22秒前
22秒前
Physio发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513655
求助须知:如何正确求助?哪些是违规求助? 4607855
关于积分的说明 14507128
捐赠科研通 4543421
什么是DOI,文献DOI怎么找? 2489541
邀请新用户注册赠送积分活动 1471503
关于科研通互助平台的介绍 1443477