Inferring Unsteady Wake Flow Fields From Partial Data by Physics-Informed Neural Networks

雷诺数 人工神经网络 唤醒 流量(数学) 均方误差 噪音(视频) 平均流量 应用数学 计算机科学 数学 统计物理学 算法 物理 人工智能 机械 统计 湍流 图像(数学)
作者
Chang Yan,Shengjun Ju,Dilong Guo,Guowei Yang,Shuanbao Yao
标识
DOI:10.1115/fedsm2022-86945
摘要

Abstract Massive differential numerical computations are necessary in Computational Fluid Dynamics. In addition, the experimental results are generally noisy. Consequently, traditional methods cannot get unsteady flow fields immediately and precisely. In this research, the inferences of unsteady wake flow fields at different Reynolds numbers by Physics-Informed Neural Networks (PINNs) are studied. Unlike typical neural networks whose loss function consists of Mean Square Error only, the loss function of PINNs consists of Mean Square Error and the sum of squares of residuals of the flow governing equations. The flow governing equations are introduced to the neural networks as a regularization of the loss function. The existence of regular term reduces the dependence on labeled data during training. Then the PINNs is trained with very little labeled data (5% of the full field). After being trained, the PINNs show excellent performance in inferring the unsteady wake flow fields. When the Reynolds number is 1e2, the Mean Absolute Error (MAE) of the reconstructed velocity field is on the order of 1e−4. Meanwhile, the MAE increases with the increase of Reynolds number. In addition, even if the random noise of the training set is introduced up to 20%, the result is still acceptable, which demonstrates the great anti-noise ability of physics-informed neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ling完成签到,获得积分10
2秒前
2秒前
2秒前
余喆完成签到,获得积分10
4秒前
lzm完成签到,获得积分10
7秒前
鲤鱼荔枝发布了新的文献求助10
7秒前
柚子茶茶茶完成签到,获得积分20
7秒前
8秒前
9秒前
9秒前
9秒前
xiao白完成签到,获得积分10
10秒前
烦恼得得得完成签到,获得积分10
11秒前
风中的惊蛰完成签到,获得积分10
12秒前
youxianlang完成签到,获得积分10
13秒前
zm发布了新的文献求助10
13秒前
李爱国应助liwenmming采纳,获得10
14秒前
小小牛马发布了新的文献求助10
14秒前
15秒前
Akim应助zm采纳,获得10
19秒前
科研通AI6应助飞天大南瓜采纳,获得30
19秒前
Zyc发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
李薇完成签到,获得积分20
20秒前
21秒前
21秒前
22秒前
22秒前
清爽寒梦完成签到 ,获得积分20
23秒前
李薇发布了新的文献求助20
23秒前
浮游应助积极松鼠采纳,获得10
24秒前
25秒前
鸡腿战神完成签到,获得积分10
25秒前
25秒前
26秒前
轩哥哥完成签到,获得积分10
27秒前
Bupivacaine发布了新的文献求助10
27秒前
科研通AI6应助迅速如柏采纳,获得10
27秒前
淡淡宇宇宝宝完成签到,获得积分10
27秒前
安静的水发布了新的文献求助10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457292
求助须知:如何正确求助?哪些是违规求助? 4563793
关于积分的说明 14291406
捐赠科研通 4488476
什么是DOI,文献DOI怎么找? 2458514
邀请新用户注册赠送积分活动 1448579
关于科研通互助平台的介绍 1424214