A Computationally Efficient Red-Lesion Extraction Method for Retinal Fundus Images

眼底(子宫) 人工智能 计算机科学 分割 像素 计算机视觉 视网膜 糖尿病性视网膜病变 特征提取 视网膜 图像分割 后极 模式识别(心理学) 眼科 光学 医学 物理 内分泌学 糖尿病
作者
Maryam Monemian,Hossein Rabbani
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:10
标识
DOI:10.1109/tim.2022.3229712
摘要

Retina is an important organ of the body, the diseases of which may lead to serious damages to human vision. Fundus retinal images are the common tools for the analysis of diabetic retinopathy (DR), which is an important retinal disease. Red-lesions are from important manifestations of DR in the fundus images. In this article, a novel method is suggested for the extraction of red-lesions from fundus images. This method can detect red-lesions without the need for prior segmentation of blood vessels or lesions. The new method works based on dividing the fundus image into square patches and finding the dark ones based on the percentage of dark pixels. After finding dark patches, it is necessary to discriminate the patches that belong to the blood vessel and red-lesion. The continuing structure of blood vessels is considered a discriminating factor for the mentioned purpose. To mathematically model the continuing structure, several states are considered for the way of locating dark patches in a neighborhood. The formation of the blood vessel in vertical, horizontal, and diagonal directions is modeled in the different states. Also, the conditions of the formation of red-lesion in each direction are declared. The performance of the proposed method is evaluated on several datasets. The simplicity of computations, high speed, and acceptable accuracy are significant advantages of this method. The proposed method is capable of providing 92% and 88% for sensitivity (SE) and specificity (SP) in the Diaretdb1 dataset. Also, it provides the values of 91% and 89% for SE and SP in the Diaretdb0 dataset. Furthermore, the SE and SP values for the FIRE dataset are equal to 90% and 92%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYBAS发布了新的文献求助10
1秒前
2秒前
2秒前
As发布了新的文献求助10
2秒前
乐观黑米发布了新的文献求助10
5秒前
迟大猫应助帝丹学生采纳,获得20
6秒前
7秒前
yyyyyyy发布了新的文献求助10
7秒前
xbo完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
11秒前
Owen应助YYBAS采纳,获得10
11秒前
lac发布了新的文献求助10
12秒前
绝对草草完成签到,获得积分10
13秒前
14秒前
哈哈哈哈发布了新的文献求助10
15秒前
15秒前
牛牛发布了新的文献求助30
16秒前
16秒前
传奇3应助guozizi采纳,获得10
17秒前
17秒前
博修发布了新的文献求助10
18秒前
19秒前
21秒前
李健的小迷弟应助As采纳,获得10
22秒前
22秒前
TKMY发布了新的文献求助10
22秒前
乐观黑米完成签到,获得积分10
23秒前
Ava应助博修采纳,获得10
24秒前
24秒前
Ethan发布了新的文献求助10
25秒前
25秒前
不加香菜完成签到 ,获得积分10
25秒前
哈哈哈哈哈哈完成签到,获得积分10
27秒前
28秒前
哈哈哈哈完成签到,获得积分10
28秒前
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
The Foraging Behavior of the Honey Bee (Apis mellifera, L.) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3677338
求助须知:如何正确求助?哪些是违规求助? 3231204
关于积分的说明 9794575
捐赠科研通 2942258
什么是DOI,文献DOI怎么找? 1613094
邀请新用户注册赠送积分活动 761411
科研通“疑难数据库(出版商)”最低求助积分说明 736832