In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series

基本事实 计算机科学 深度学习 遥感 卷积神经网络 人工神经网络 卫星图像 卫星 人工智能 机器学习 数据挖掘 地理 工程类 航空航天工程
作者
Ignazio Gallo,Luigi Ranghetti,Nicola Landro,Riccardo La Grassa,Mirco Boschetti
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 335-352 被引量:8
标识
DOI:10.1016/j.isprsjprs.2022.12.005
摘要

An accurate, frequently updated, automatic and reproducible mapping procedure to identify seasonal cultivated crops is a prerequisite for many crop monitoring activities. Deep learning was demonstrated to be an effective mapping approach already successfully applied to decametric resolution satellite images (like Sentinel-2 data) to produce yearly crop maps. In this framework, algorithm training is performed with ground truth typically consisting of spatially explicit information available after the end of the season (e.g. yearly crop maps and/or farmer declaration for subsidies at parcel level); however, such data (i) does not allow performing in-season prediction, and (ii) does not provide temporal details fundamental to describe a dynamic crop succession and/or to understand crop management (i.e. planting and harvesting). In this paper we present a Deep Neural Network-based approach capable of generating (i) a crop map of the current season at a specific point in time (“In season mapping” conventionally at the end of the current year), along with (ii) all intermediate maps during the season able to describe in near real-time the evolution of crop presence (“Dynamic-mapping” at the temporal granularity of satellite imagery revisiting, e.g., 5 days for Sentinel-2 data). This approach adopts a smart training procedure of a Deep Neural model by exploiting historical satellite data and ground truth. We introduce a method to automatically generate “short-term” ground truth maps (i.e. 5 days reference) starting from the “long-term” ones (i.e. available yearly static reference) and characterizing temporally the different crop presence by performing a phenological analysis of historical time series. The model was trained and validated in Lombardy (North of Italy) exploiting multi-annual authoritative crop maps from 2016 to 2019. Validation was performed both in time (same areas used for training in a different year) and space (different location) for the year 2019. The quantitative error metrics calculation and Spatio-temporal analysis clearly demonstrate that the model can predict in-season crop presence with a generalization capacity over the long-term (yearly maps: OA > 70% and Kappa > 0.64%) and that the short-term predictions (5 days maps) are coherent with the reference information from expert knowledge (local crop calendars). The model can produce dynamically along the season short-term maps with a medium-high crop-specific User Accuracy at the maximum green-up phase (UA > 53% up to 95%). These products are of extreme interest for final users providing information at the peak of plant development that dynamically changes according to the considered crop, the specific location and the investigated season. These results demonstrate that it is possible to produce a crop map early in the season and extract useful additional information such as crop intensity (e.g. double crops presence) and crop dynamics related to different sowing dates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小夏完成签到,获得积分10
刚刚
冰烟完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
3秒前
nczpf2010完成签到,获得积分10
3秒前
flyzhang20发布了新的文献求助10
4秒前
沉默新梅发布了新的文献求助10
4秒前
欢呼山雁发布了新的文献求助10
5秒前
CipherSage应助Warden采纳,获得10
6秒前
食小十完成签到,获得积分20
7秒前
7秒前
震动的翠关注了科研通微信公众号
8秒前
悦耳海亦发布了新的文献求助10
9秒前
柚子完成签到 ,获得积分10
9秒前
找文献呢发布了新的文献求助10
12秒前
李爱国应助医学僧采纳,获得10
12秒前
13秒前
14秒前
十一发布了新的文献求助10
15秒前
沉默新梅完成签到,获得积分20
15秒前
15秒前
着急的白柏完成签到,获得积分10
16秒前
17秒前
litow发布了新的文献求助10
17秒前
18秒前
JamesPei应助flyzhang20采纳,获得30
19秒前
qwe完成签到,获得积分10
20秒前
蓝天发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
英俊的铭应助风趣的梦易采纳,获得10
21秒前
震动的翠发布了新的文献求助10
21秒前
21秒前
ali发布了新的文献求助10
22秒前
22秒前
22秒前
24秒前
25秒前
25秒前
欢呼山雁完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679986
求助须知:如何正确求助?哪些是违规求助? 4994921
关于积分的说明 15171248
捐赠科研通 4839686
什么是DOI,文献DOI怎么找? 2593578
邀请新用户注册赠送积分活动 1546615
关于科研通互助平台的介绍 1504727