In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series

基本事实 计算机科学 深度学习 遥感 卷积神经网络 人工神经网络 卫星图像 卫星 人工智能 机器学习 数据挖掘 地理 工程类 航空航天工程
作者
Ignazio Gallo,Luigi Ranghetti,Nicola Landro,Riccardo La Grassa,Mirco Boschetti
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 335-352 被引量:8
标识
DOI:10.1016/j.isprsjprs.2022.12.005
摘要

An accurate, frequently updated, automatic and reproducible mapping procedure to identify seasonal cultivated crops is a prerequisite for many crop monitoring activities. Deep learning was demonstrated to be an effective mapping approach already successfully applied to decametric resolution satellite images (like Sentinel-2 data) to produce yearly crop maps. In this framework, algorithm training is performed with ground truth typically consisting of spatially explicit information available after the end of the season (e.g. yearly crop maps and/or farmer declaration for subsidies at parcel level); however, such data (i) does not allow performing in-season prediction, and (ii) does not provide temporal details fundamental to describe a dynamic crop succession and/or to understand crop management (i.e. planting and harvesting). In this paper we present a Deep Neural Network-based approach capable of generating (i) a crop map of the current season at a specific point in time (“In season mapping” conventionally at the end of the current year), along with (ii) all intermediate maps during the season able to describe in near real-time the evolution of crop presence (“Dynamic-mapping” at the temporal granularity of satellite imagery revisiting, e.g., 5 days for Sentinel-2 data). This approach adopts a smart training procedure of a Deep Neural model by exploiting historical satellite data and ground truth. We introduce a method to automatically generate “short-term” ground truth maps (i.e. 5 days reference) starting from the “long-term” ones (i.e. available yearly static reference) and characterizing temporally the different crop presence by performing a phenological analysis of historical time series. The model was trained and validated in Lombardy (North of Italy) exploiting multi-annual authoritative crop maps from 2016 to 2019. Validation was performed both in time (same areas used for training in a different year) and space (different location) for the year 2019. The quantitative error metrics calculation and Spatio-temporal analysis clearly demonstrate that the model can predict in-season crop presence with a generalization capacity over the long-term (yearly maps: OA > 70% and Kappa > 0.64%) and that the short-term predictions (5 days maps) are coherent with the reference information from expert knowledge (local crop calendars). The model can produce dynamically along the season short-term maps with a medium-high crop-specific User Accuracy at the maximum green-up phase (UA > 53% up to 95%). These products are of extreme interest for final users providing information at the peak of plant development that dynamically changes according to the considered crop, the specific location and the investigated season. These results demonstrate that it is possible to produce a crop map early in the season and extract useful additional information such as crop intensity (e.g. double crops presence) and crop dynamics related to different sowing dates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
静静完成签到,获得积分10
3秒前
3秒前
辣椒油完成签到,获得积分10
4秒前
5秒前
7秒前
烟花应助屈洪娇采纳,获得10
7秒前
8秒前
陈梦洋11发布了新的文献求助10
8秒前
9秒前
fm发布了新的文献求助10
9秒前
诚心的沛儿完成签到,获得积分10
9秒前
天z完成签到,获得积分10
11秒前
研友_VZG7GZ应助Young4399采纳,获得10
11秒前
Tian发布了新的文献求助10
11秒前
33关闭了33文献求助
11秒前
wwwwww发布了新的文献求助10
13秒前
13秒前
英吉利25发布了新的文献求助10
13秒前
自由的季节完成签到,获得积分10
13秒前
luan完成签到,获得积分10
14秒前
14秒前
15秒前
Mzb发布了新的文献求助10
16秒前
852应助fm采纳,获得10
17秒前
香蕉船上的蕉太狼完成签到,获得积分10
18秒前
19秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353187
求助须知:如何正确求助?哪些是违规求助? 4485831
关于积分的说明 13964569
捐赠科研通 4386047
什么是DOI,文献DOI怎么找? 2409731
邀请新用户注册赠送积分活动 1402013
关于科研通互助平台的介绍 1375783