In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series

基本事实 计算机科学 深度学习 遥感 卷积神经网络 人工神经网络 卫星图像 卫星 人工智能 机器学习 数据挖掘 地理 工程类 航空航天工程
作者
Ignazio Gallo,Luigi Ranghetti,Nicola Landro,Riccardo La Grassa,Mirco Boschetti
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 335-352 被引量:8
标识
DOI:10.1016/j.isprsjprs.2022.12.005
摘要

An accurate, frequently updated, automatic and reproducible mapping procedure to identify seasonal cultivated crops is a prerequisite for many crop monitoring activities. Deep learning was demonstrated to be an effective mapping approach already successfully applied to decametric resolution satellite images (like Sentinel-2 data) to produce yearly crop maps. In this framework, algorithm training is performed with ground truth typically consisting of spatially explicit information available after the end of the season (e.g. yearly crop maps and/or farmer declaration for subsidies at parcel level); however, such data (i) does not allow performing in-season prediction, and (ii) does not provide temporal details fundamental to describe a dynamic crop succession and/or to understand crop management (i.e. planting and harvesting). In this paper we present a Deep Neural Network-based approach capable of generating (i) a crop map of the current season at a specific point in time (“In season mapping” conventionally at the end of the current year), along with (ii) all intermediate maps during the season able to describe in near real-time the evolution of crop presence (“Dynamic-mapping” at the temporal granularity of satellite imagery revisiting, e.g., 5 days for Sentinel-2 data). This approach adopts a smart training procedure of a Deep Neural model by exploiting historical satellite data and ground truth. We introduce a method to automatically generate “short-term” ground truth maps (i.e. 5 days reference) starting from the “long-term” ones (i.e. available yearly static reference) and characterizing temporally the different crop presence by performing a phenological analysis of historical time series. The model was trained and validated in Lombardy (North of Italy) exploiting multi-annual authoritative crop maps from 2016 to 2019. Validation was performed both in time (same areas used for training in a different year) and space (different location) for the year 2019. The quantitative error metrics calculation and Spatio-temporal analysis clearly demonstrate that the model can predict in-season crop presence with a generalization capacity over the long-term (yearly maps: OA > 70% and Kappa > 0.64%) and that the short-term predictions (5 days maps) are coherent with the reference information from expert knowledge (local crop calendars). The model can produce dynamically along the season short-term maps with a medium-high crop-specific User Accuracy at the maximum green-up phase (UA > 53% up to 95%). These products are of extreme interest for final users providing information at the peak of plant development that dynamically changes according to the considered crop, the specific location and the investigated season. These results demonstrate that it is possible to produce a crop map early in the season and extract useful additional information such as crop intensity (e.g. double crops presence) and crop dynamics related to different sowing dates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XiaotongLi完成签到 ,获得积分10
1秒前
凌壬靖完成签到 ,获得积分10
3秒前
5秒前
mark33442完成签到,获得积分10
11秒前
happyVET完成签到,获得积分10
17秒前
闪闪小小完成签到 ,获得积分10
22秒前
22秒前
甜蜜的代容完成签到,获得积分10
22秒前
叶子完成签到 ,获得积分10
25秒前
26秒前
26秒前
digger2023完成签到 ,获得积分10
27秒前
刘刘宇航发布了新的文献求助30
29秒前
zhaoxiaonuan完成签到,获得积分10
32秒前
fire完成签到 ,获得积分10
33秒前
鱼鱼完成签到 ,获得积分10
33秒前
professorY完成签到 ,获得积分10
35秒前
krathhong完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
37秒前
稳重乌冬面完成签到 ,获得积分10
38秒前
喜悦的香之完成签到 ,获得积分10
42秒前
45秒前
stiger完成签到,获得积分10
46秒前
呆萌初南完成签到 ,获得积分10
48秒前
51秒前
coolkid应助甜蜜的代容采纳,获得10
52秒前
zjq完成签到 ,获得积分10
53秒前
田様应助fantexi113采纳,获得10
55秒前
jewel9发布了新的文献求助10
58秒前
1分钟前
水晶李完成签到 ,获得积分10
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
1分钟前
e麓绝尘完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
fantexi113发布了新的文献求助10
1分钟前
张先生完成签到 ,获得积分10
1分钟前
Lemenchichi完成签到,获得积分10
1分钟前
LT完成签到 ,获得积分0
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503148
关于积分的说明 11111393
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870776
科研通“疑难数据库(出版商)”最低求助积分说明 802292