In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series

基本事实 计算机科学 深度学习 遥感 卷积神经网络 人工神经网络 卫星图像 卫星 人工智能 机器学习 数据挖掘 地理 工程类 航空航天工程
作者
Ignazio Gallo,Luigi Ranghetti,Nicola Landro,Riccardo La Grassa,Mirco Boschetti
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 335-352 被引量:8
标识
DOI:10.1016/j.isprsjprs.2022.12.005
摘要

An accurate, frequently updated, automatic and reproducible mapping procedure to identify seasonal cultivated crops is a prerequisite for many crop monitoring activities. Deep learning was demonstrated to be an effective mapping approach already successfully applied to decametric resolution satellite images (like Sentinel-2 data) to produce yearly crop maps. In this framework, algorithm training is performed with ground truth typically consisting of spatially explicit information available after the end of the season (e.g. yearly crop maps and/or farmer declaration for subsidies at parcel level); however, such data (i) does not allow performing in-season prediction, and (ii) does not provide temporal details fundamental to describe a dynamic crop succession and/or to understand crop management (i.e. planting and harvesting). In this paper we present a Deep Neural Network-based approach capable of generating (i) a crop map of the current season at a specific point in time (“In season mapping” conventionally at the end of the current year), along with (ii) all intermediate maps during the season able to describe in near real-time the evolution of crop presence (“Dynamic-mapping” at the temporal granularity of satellite imagery revisiting, e.g., 5 days for Sentinel-2 data). This approach adopts a smart training procedure of a Deep Neural model by exploiting historical satellite data and ground truth. We introduce a method to automatically generate “short-term” ground truth maps (i.e. 5 days reference) starting from the “long-term” ones (i.e. available yearly static reference) and characterizing temporally the different crop presence by performing a phenological analysis of historical time series. The model was trained and validated in Lombardy (North of Italy) exploiting multi-annual authoritative crop maps from 2016 to 2019. Validation was performed both in time (same areas used for training in a different year) and space (different location) for the year 2019. The quantitative error metrics calculation and Spatio-temporal analysis clearly demonstrate that the model can predict in-season crop presence with a generalization capacity over the long-term (yearly maps: OA > 70% and Kappa > 0.64%) and that the short-term predictions (5 days maps) are coherent with the reference information from expert knowledge (local crop calendars). The model can produce dynamically along the season short-term maps with a medium-high crop-specific User Accuracy at the maximum green-up phase (UA > 53% up to 95%). These products are of extreme interest for final users providing information at the peak of plant development that dynamically changes according to the considered crop, the specific location and the investigated season. These results demonstrate that it is possible to produce a crop map early in the season and extract useful additional information such as crop intensity (e.g. double crops presence) and crop dynamics related to different sowing dates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixia完成签到 ,获得积分10
1秒前
杨畅完成签到,获得积分10
2秒前
liguanyu1078完成签到,获得积分10
2秒前
小包子完成签到,获得积分10
2秒前
五本笔记完成签到 ,获得积分10
2秒前
难过的溪流完成签到 ,获得积分10
3秒前
fawr完成签到 ,获得积分10
3秒前
哎呀完成签到 ,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
涂山白切鸡完成签到,获得积分10
4秒前
ju00发布了新的文献求助10
4秒前
abtitw完成签到,获得积分10
4秒前
zxx发布了新的文献求助10
6秒前
Freddy完成签到 ,获得积分10
6秒前
tulips完成签到 ,获得积分10
6秒前
洁净的天德完成签到,获得积分10
7秒前
Sunsets完成签到 ,获得积分10
7秒前
隔水一路秋完成签到,获得积分10
8秒前
amanda完成签到,获得积分10
9秒前
Cc完成签到 ,获得积分10
9秒前
飞云发布了新的文献求助30
10秒前
刘传宏完成签到,获得积分10
10秒前
dujinjun完成签到,获得积分10
11秒前
zuoyou完成签到,获得积分10
11秒前
11秒前
ww完成签到,获得积分10
11秒前
tomorrow完成签到,获得积分10
12秒前
慕青应助ju00采纳,获得10
12秒前
14秒前
柒tt完成签到,获得积分10
14秒前
haozi完成签到,获得积分10
16秒前
开心的眼睛完成签到,获得积分10
17秒前
甜美的芷完成签到,获得积分20
17秒前
ding应助爱看文献的小朱采纳,获得10
18秒前
yaowenjun完成签到,获得积分10
19秒前
玉米侠完成签到 ,获得积分10
20秒前
DreamRunner0410完成签到,获得积分10
21秒前
Orange应助甜美的芷采纳,获得10
22秒前
龙抬头完成签到,获得积分10
22秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584888
求助须知:如何正确求助?哪些是违规求助? 4668769
关于积分的说明 14771947
捐赠科研通 4616207
什么是DOI,文献DOI怎么找? 2530267
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590