In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series

基本事实 计算机科学 深度学习 遥感 卷积神经网络 人工神经网络 卫星图像 卫星 人工智能 机器学习 数据挖掘 地理 工程类 航空航天工程
作者
Ignazio Gallo,Luigi Ranghetti,Nicola Landro,Riccardo La Grassa,Mirco Boschetti
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 335-352 被引量:8
标识
DOI:10.1016/j.isprsjprs.2022.12.005
摘要

An accurate, frequently updated, automatic and reproducible mapping procedure to identify seasonal cultivated crops is a prerequisite for many crop monitoring activities. Deep learning was demonstrated to be an effective mapping approach already successfully applied to decametric resolution satellite images (like Sentinel-2 data) to produce yearly crop maps. In this framework, algorithm training is performed with ground truth typically consisting of spatially explicit information available after the end of the season (e.g. yearly crop maps and/or farmer declaration for subsidies at parcel level); however, such data (i) does not allow performing in-season prediction, and (ii) does not provide temporal details fundamental to describe a dynamic crop succession and/or to understand crop management (i.e. planting and harvesting). In this paper we present a Deep Neural Network-based approach capable of generating (i) a crop map of the current season at a specific point in time (“In season mapping” conventionally at the end of the current year), along with (ii) all intermediate maps during the season able to describe in near real-time the evolution of crop presence (“Dynamic-mapping” at the temporal granularity of satellite imagery revisiting, e.g., 5 days for Sentinel-2 data). This approach adopts a smart training procedure of a Deep Neural model by exploiting historical satellite data and ground truth. We introduce a method to automatically generate “short-term” ground truth maps (i.e. 5 days reference) starting from the “long-term” ones (i.e. available yearly static reference) and characterizing temporally the different crop presence by performing a phenological analysis of historical time series. The model was trained and validated in Lombardy (North of Italy) exploiting multi-annual authoritative crop maps from 2016 to 2019. Validation was performed both in time (same areas used for training in a different year) and space (different location) for the year 2019. The quantitative error metrics calculation and Spatio-temporal analysis clearly demonstrate that the model can predict in-season crop presence with a generalization capacity over the long-term (yearly maps: OA > 70% and Kappa > 0.64%) and that the short-term predictions (5 days maps) are coherent with the reference information from expert knowledge (local crop calendars). The model can produce dynamically along the season short-term maps with a medium-high crop-specific User Accuracy at the maximum green-up phase (UA > 53% up to 95%). These products are of extreme interest for final users providing information at the peak of plant development that dynamically changes according to the considered crop, the specific location and the investigated season. These results demonstrate that it is possible to produce a crop map early in the season and extract useful additional information such as crop intensity (e.g. double crops presence) and crop dynamics related to different sowing dates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
天晴完成签到,获得积分10
4秒前
melon完成签到,获得积分10
4秒前
6秒前
典雅的依云完成签到,获得积分20
6秒前
7秒前
7秒前
9秒前
隐形曼青应助calmxp采纳,获得10
10秒前
10秒前
归尘发布了新的文献求助10
11秒前
13秒前
瘦瘦慕凝发布了新的文献求助10
14秒前
陈高兴发布了新的文献求助10
14秒前
去有风的地方完成签到 ,获得积分10
14秒前
chino发布了新的文献求助10
14秒前
peak完成签到 ,获得积分10
15秒前
15秒前
人类免疫缺陷完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
16秒前
舒适香露完成签到,获得积分10
17秒前
lucky发布了新的文献求助10
18秒前
李爱国应助欣喜的人龙采纳,获得10
19秒前
19秒前
19秒前
科研通AI5应助冷静的网络采纳,获得50
19秒前
19秒前
cx发布了新的文献求助10
20秒前
小唐完成签到,获得积分10
20秒前
敏感的夜阑完成签到,获得积分20
20秒前
瘦瘦慕凝完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
Peggy完成签到,获得积分10
24秒前
轨迹发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003048
求助须知:如何正确求助?哪些是违规求助? 4247870
关于积分的说明 13234531
捐赠科研通 4046862
什么是DOI,文献DOI怎么找? 2213996
邀请新用户注册赠送积分活动 1224019
关于科研通互助平台的介绍 1144315