Array ultrasonic guided wave spiral focusing detection method for inner damage of messenger cable in covered area

螺旋(铁路) 信号(编程语言) 声学 超声波传感器 光学 材料科学 干扰(通信) 工程类 物理 计算机科学 电信 机械工程 频道(广播) 程序设计语言
作者
Xiaobin Hong,Jinfan Lin,Zhou Jian-xi,Dingmin Yang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:188: 109977-109977 被引量:5
标识
DOI:10.1016/j.ymssp.2022.109977
摘要

The messenger cable damage detection of catenary system is one of the important safeguard to ensure the safe operation of electrified railways. Due to the multi-layer and opposite spiral direction structure of the messenger cable, the ultrasonic guided wave dispersion curve is difficult to obtain, and the inner layer damage signal is too weak to identify. A novel array ultrasonic guided wave spiral focusing detection method is proposed for the inner layer damage of messenger cable in covered area. Firstly, the dispersion curves of ultrasonic guided waves in the messenger cable were calculated by semi-analytical finite element based on twisted coordinate system, and the multi-modal propagation characteristics were analyzed. Secondly, the path differences from guided wave array elements to inner layer were studied to get the adjustment matrix of spiral focusing. Thirdly, the inner damage information was extracted from spiral focusing signal by cross sparse representation based on dispersion dictionary, and the damage autofocus imaging was realized by bi-directional time reversal imaging. Finally, the spiral focusing enhancement effect and identification imaging effect of inner layer damage were analyzed and verified through simulation and experiments. The results show that, compared with the normal superimposed method, the damage signal indexes of sub-outer layer and the center layer are increased by 32.2% and 40.8% respectively after spiral focusing. The inner layer damage signal of the spiral focusing method has a higher recognition rate and good anti-interference ability, and the damage imaging has low sensitivity to threshold value and has no damage artifacts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助566采纳,获得10
刚刚
1秒前
希望天下0贩的0应助LucyLi采纳,获得10
1秒前
1秒前
Honahlee发布了新的文献求助10
1秒前
乱世发布了新的文献求助10
1秒前
li发布了新的文献求助10
1秒前
瑾年发布了新的文献求助10
2秒前
沉静白翠发布了新的文献求助10
2秒前
2秒前
小爱同学完成签到,获得积分10
2秒前
Lucas应助六七采纳,获得10
2秒前
queer完成签到,获得积分10
3秒前
3秒前
青藤完成签到,获得积分10
4秒前
烟里戏发布了新的文献求助30
4秒前
孤独惜海发布了新的文献求助10
4秒前
buno应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
6秒前
关添应助科研通管家采纳,获得20
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
buno应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得100
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
阔达晓博完成签到,获得积分20
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
buno应助科研通管家采纳,获得10
6秒前
残剑月应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
buno应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
buno应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836