Tunnel Lining Crack Intelligent Recognition Based on YOLOv11 Algorithm

计算机科学 人工智能
作者
Yalin Zhang,Pei Niu,Feng Guo,Wei Yan,Jian Liu,Lei Kou
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2025-01-7137
摘要

<div class="section abstract"><div class="htmlview paragraph">Tunnel linings are an important safeguard for the integrity and stability of tunnels. However, cracks in the tunnel lining may have extremely unfavourable consequences. With the acceleration of urbanisation and the increasing construction of tunnels, the problem of cracks in the concrete lining is becoming more and more prominent. These cracks not only seriously affect the stability of the structure, but also pose a serious threat to the safety of tunnel operation. If left unchecked, the cracks may expand further and cause various safety hazards, such as water leakage and falling blocks. This in turn will undermine the normal function of the tunnel and endanger the lives of tunnel users. It has been proved that the traditional manual method of detecting cracks in tunnels has problems such as low accuracy and low efficiency. In order to solve this problem, it is very necessary for this study to pioneer an intelligent method for identifying tunnel lining cracks using the YOLOv11 algorithm. A unique crack dataset was constructed for model training and testing. The experimental results are very encouraging, with an accuracy of 93.3% for the evaluation metrics, a recall of 94.5% and an average precision of 96.9%. This innovative method shows good accuracy and practicality in tunnel lining crack detection, and its innovation lies in adopting advanced algorithms to locate cracks efficiently and accurately, breaking through the traditional detection limitations. It can help engineers and technicians to identify and evaluate tunnel lining cracks more effectively and take timely repair and maintenance measures, which is conducive to improving the safety and service life of tunnels.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
完美世界应助欢呼的墨镜采纳,获得10
2秒前
slx发布了新的文献求助10
3秒前
好好学习发布了新的文献求助10
3秒前
4秒前
zzduo完成签到,获得积分20
4秒前
5秒前
李健的小迷弟应助wwzj采纳,获得30
6秒前
orixero应助爱听歌的明轩采纳,获得10
7秒前
8秒前
9秒前
9秒前
10秒前
打打应助vico采纳,获得10
11秒前
深情安青应助zty采纳,获得10
12秒前
美丽老三发布了新的文献求助10
12秒前
Lucas应助格子采纳,获得30
12秒前
ccc发布了新的文献求助10
14秒前
15秒前
共享精神应助caizhiwei采纳,获得10
15秒前
科研通AI5应助doku采纳,获得10
15秒前
15秒前
16秒前
猪猪hero应助wxyllxx采纳,获得10
16秒前
123完成签到,获得积分10
16秒前
Shine完成签到 ,获得积分10
17秒前
18秒前
tt完成签到,获得积分10
18秒前
拉长的板凳完成签到,获得积分10
18秒前
18秒前
20秒前
20秒前
小小怪发布了新的文献求助10
21秒前
23秒前
YUMI发布了新的文献求助10
24秒前
科研通AI5应助小小怪采纳,获得10
24秒前
zty发布了新的文献求助10
24秒前
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565528
求助须知:如何正确求助?哪些是违规求助? 3138490
关于积分的说明 9426917
捐赠科研通 2838955
什么是DOI,文献DOI怎么找? 1560600
邀请新用户注册赠送积分活动 729739
科研通“疑难数据库(出版商)”最低求助积分说明 717597