Faster Deliveries and Smarter Order Assignments for an On‐Demand Meal Delivery Platform

订单(交换) 计算机科学 餐食 业务 运营管理 经济 食品科学 财务 化学
作者
Wenzheng Mao,Liu Ming,Ying Rong,Christopher S. Tang,Huan Zheng
出处
期刊:Journal of Operations Management [Wiley]
标识
DOI:10.1002/joom.1354
摘要

ABSTRACT The rapid growth of on‐demand meal delivery platforms has heightened competition, making customer retention a critical priority. While prior research on order dispatch algorithms has largely focused on minimizing delivery time or delay, the direct impact of delivery performance on repeat purchases remains underexplored. Using transactional data from an online meal delivery platform in China, we empirically investigate the asymmetric effects of early and late deliveries on customer repurchasing behavior. To address potential endogeneity, we introduce driver experience and local knowledge, two previously overlooked factors in platform algorithms, as novel instrumental variables. The survival analysis shows that late deliveries significantly reduce future orders, while early deliveries provide only limited benefits. Guided by these empirical insights, we develop a simulation‐based evaluation of different order dispatch algorithms, revealing that maximizing future orders, rather than minimizing delivery time or delays, yields the highest future orders. These insights offer actionable recommendations for platform managers, stressing the importance of strategic adjustments in dispatch algorithms and integrating heterogeneous treatment effects into algorithmic design. By merging operational delivery performance with consumer behavior insights through causal inference and optimization, this study provides a novel end‐to‐end framework for creating data‐driven dispatch algorithms that enhance both service efficiency and customer retention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦中的鬼之尾巴完成签到,获得积分10
刚刚
1秒前
1秒前
mytx应助王铭元采纳,获得30
1秒前
Owen应助centlay采纳,获得10
3秒前
啦啦啦啦啦啦啦啦关注了科研通微信公众号
3秒前
杳鸢应助cherry采纳,获得10
4秒前
5秒前
爆米花应助genomed采纳,获得10
6秒前
7秒前
归尘发布了新的文献求助10
7秒前
kingwill应助zz采纳,获得20
7秒前
7秒前
慕容半邪发布了新的文献求助10
9秒前
trauma完成签到,获得积分20
9秒前
万能图书馆应助小清新采纳,获得10
9秒前
汉堡包应助woodword采纳,获得10
10秒前
guapiqynn发布了新的文献求助30
10秒前
11秒前
顺心的雅阳完成签到,获得积分10
11秒前
12秒前
13秒前
柿子吖完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
julia应助超级的诗兰采纳,获得10
15秒前
Cora发布了新的文献求助30
15秒前
小白应助FST采纳,获得10
19秒前
19秒前
19秒前
清新的音响完成签到 ,获得积分10
21秒前
一二发布了新的文献求助10
21秒前
22秒前
22秒前
烟花应助机灵的安青采纳,获得30
23秒前
科目三应助枫叶采纳,获得10
24秒前
24秒前
lalala发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469785
求助须知:如何正确求助?哪些是违规求助? 3062985
关于积分的说明 9080938
捐赠科研通 2753206
什么是DOI,文献DOI怎么找? 1510815
邀请新用户注册赠送积分活动 698061
科研通“疑难数据库(出版商)”最低求助积分说明 698018