Artificial intelligence in medical imaging: From task-specific models to large-scale foundation models

人工智能 医学影像学 深度学习 计算机科学 任务(项目管理) 基础(证据) 相关性(法律) 工作流程 模式 磁共振成像 机器学习 医学 放射科 工程类 系统工程 考古 社会科学 数据库 社会学 法学 政治学 历史
作者
Yueyan Bian,Jin Li,Chuyang Ye,Xiuqin Jia,Qi Yang
出处
期刊:Chinese Medical Journal [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/cm9.0000000000003489
摘要

Abstract Artificial intelligence (AI), particularly deep learning, has demonstrated remarkable performance in medical imaging across a variety of modalities, including X-ray, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), and pathological imaging. However, most existing state-of-the-art AI techniques are task-specific and focus on a limited range of imaging modalities. Compared to these task-specific models, emerging foundation models represent a significant milestone in AI development. These models can learn generalized representations of medical images and apply them to downstream tasks through zero-shot or few-shot fine-tuning. Foundation models have the potential to address the comprehensive and multifactorial challenges encountered in clinical practice. This article reviews the clinical applications of both task-specific and foundation models, highlighting their differences, complementarities, and clinical relevance. We also examine their future research directions and potential challenges. Unlike the replacement relationship seen between deep learning and traditional machine learning, task-specific and foundation models are complementary, despite inherent differences. While foundation models primarily focus on segmentation and classification, task-specific models are integrated into nearly all medical image analyses. However, with further advancements, foundation models could be applied to other clinical scenarios. In conclusion, all indications suggest that task-specific and foundation models, especially the latter, have the potential to drive breakthroughs in medical imaging, from image processing to clinical workflows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
陈博儿发布了新的文献求助10
2秒前
3秒前
清爽的雨竹完成签到,获得积分10
5秒前
Jasper应助阿天采纳,获得30
5秒前
5秒前
6秒前
lily336699发布了新的文献求助30
6秒前
7秒前
345678与发布了新的文献求助10
7秒前
9秒前
10秒前
大意的晓亦完成签到 ,获得积分10
11秒前
Bowman完成签到,获得积分10
11秒前
驴哥完成签到,获得积分10
12秒前
个性的饼干完成签到,获得积分10
13秒前
满意白卉完成签到 ,获得积分10
13秒前
简单松鼠完成签到 ,获得积分10
13秒前
Lionel完成签到,获得积分10
14秒前
RUSH发布了新的文献求助10
14秒前
15秒前
苏格拉底的嘲笑完成签到,获得积分10
15秒前
345678与完成签到,获得积分20
17秒前
迟迟完成签到,获得积分20
17秒前
FartKing发布了新的文献求助20
17秒前
chancewong发布了新的文献求助10
19秒前
CipherSage应助双双采纳,获得10
19秒前
SJT完成签到,获得积分10
19秒前
虚幻龙猫完成签到,获得积分10
21秒前
地瓜叶发布了新的文献求助20
22秒前
小罗在无锡完成签到,获得积分10
22秒前
26秒前
FartKing完成签到,获得积分10
26秒前
27秒前
RUSH完成签到,获得积分10
28秒前
long完成签到,获得积分10
30秒前
32秒前
huangjs发布了新的文献求助10
33秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540680
求助须知:如何正确求助?哪些是违规求助? 3117973
关于积分的说明 9333396
捐赠科研通 2815872
什么是DOI,文献DOI怎么找? 1547779
邀请新用户注册赠送积分活动 721175
科研通“疑难数据库(出版商)”最低求助积分说明 712578