相互作用体
胶水
泛素连接酶
仿形(计算机编程)
计算生物学
DNA连接酶
化学
细胞生物学
生物
计算机科学
材料科学
泛素
生物化学
基因
复合材料
操作系统
作者
Yan Xu,Wensi Zhao,Hui-Jun Nie,Jiamin Wang,Jingjing Fu,Hao Hu,Zihao Liu,Sheng‐ce Tao,Mingya Zhang,Yubo Zhou,Jia Li,Minjia Tan,Xiaohua Chen
标识
DOI:10.1002/anie.202505053
摘要
Molecular glue (MG) degraders, small molecules with significant therapeutic potential for targeting undruggable proteins, are emerging as new modality in drug discovery. Profiling the E3 ligase interactome induced by MG degraders provides insights into their mechanism of action and identifies clinically relevant neo‐substrates for degradation, thereby offering new therapeutic opportunities. However, established methods face significant challenges in comprehensive and accurate profiling of MG degrader‐induced E3 ligase interactome. Herein, we introduce the concept of globally crosslinking profiling of the MG degrader‐induced E3 ligase interactome in living cells, achieved by integrating genetic code expansion technology with mass spectrometry‐based proteomics. Our approach presents an efficient and robust strategy for identifying neo‐substrates recruited to cereblon E3 ligase by the known degraders CC‐885 and DKY709, offering valuable insights for clinical evaluation and significantly expanding their target space. Moreover, we developed two novel MG degraders with potent anti‐proliferative effects on cancer cells, and application of our method identified neo‐substrates, revealing a previously unrecognized target landscape and advancing our understanding of E3 ligase–neo‐substrate interactions. Overall, our study provides a powerful tool for neo‐substrate identification and expanding target space of E3 ligase, opening new opportunities for developing next‐generation MG degraders to address the clinical challenge of undruggable targets.
科研通智能强力驱动
Strongly Powered by AbleSci AI