Artificial Intelligence for the Discovery of Safe and Effective Flame Retardants

阻燃剂 环境科学 工程类 法律工程学 生化工程 化学 有机化学
作者
Xiaojia Chen,Min Nian,Feng Zhao,Yu Ma,Jingzhi Yao,Siyi Wang,Xing Chen,Dan Li,Mingliang Fang
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c14787
摘要

Organophosphorus flame retardants (OPFRs) are important chemical additives that are used in commercial products. However, owing to increasing health concerns, the discovery of new OPFRs has become imperative. Herein, we propose an explainable artificial intelligence-assisted product design (AIPD) methodological framework for screening novel, safe, and effective OPFRs. Using a deep neural network, we established a flame retardancy prediction model with an accuracy of 0.90. Employing the SHapley Additive exPlanations approach, we have identified the Morgan 507 (P═N connected to a benzene ring) and 114 (quaternary carbon) substructures as promoting units in flame retardancy. Subsequently, approximately 600 compounds were selected as OPFR candidates from the ZINC database. Further refinement was achieved through a comprehensive scoring system that incorporated absorption, toxicity, and persistence, thereby yielding six prospective candidates. We experimentally validated these candidates and identified compound Z2 as a promising candidate, which was not toxic to zebrafish embryos. Our methodological framework leverages AIPD to effectively guide the discovery of novel flame retardants, significantly reducing both developmental time and costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助Blank采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
汉堡包应助t忒对采纳,获得30
2秒前
乐乐应助方班术采纳,获得10
2秒前
想养一只猫完成签到,获得积分10
4秒前
4秒前
4秒前
小熊猪应助高兴的沛山采纳,获得60
5秒前
点点丶逗逗发布了新的文献求助100
5秒前
5秒前
6秒前
高贵的斑马完成签到,获得积分20
6秒前
6秒前
6秒前
Hou完成签到 ,获得积分10
6秒前
英姑应助英俊的老太采纳,获得10
7秒前
ch发布了新的文献求助10
7秒前
谷粱紫槐发布了新的文献求助10
8秒前
9秒前
10秒前
手可摘星陈同学完成签到 ,获得积分10
10秒前
10秒前
guobiao发布了新的文献求助10
10秒前
11秒前
11秒前
ling22发布了新的文献求助10
11秒前
12秒前
SciGPT应助ywb采纳,获得10
12秒前
13秒前
13秒前
14秒前
科目三应助TIGun采纳,获得10
15秒前
研友_VZG7GZ应助小田心采纳,获得10
16秒前
joan发布了新的文献求助30
16秒前
robin发布了新的文献求助10
16秒前
xkxkii发布了新的文献求助10
16秒前
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738049
求助须知:如何正确求助?哪些是违规求助? 3281565
关于积分的说明 10026096
捐赠科研通 2998320
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782682
科研通“疑难数据库(出版商)”最低求助积分说明 749882