Artificial intelligence to predict inhibitors of drug-metabolizing enzymes and transporters for safer drug design

更安全的 药品 运输机 计算生物学 药理学 药物发现 计算机科学 生物 化学 生物信息学 生物化学 基因 计算机安全
作者
Arnab Bhattacharjee,Ankur Kumar,Probir Kumar Ojha,Supratik Kar
出处
期刊:Expert Opinion on Drug Discovery [Taylor & Francis]
卷期号:: 1-21
标识
DOI:10.1080/17460441.2025.2491669
摘要

Drug-metabolizing enzymes (DMEs) and transporters (DTs) play integral roles in drug metabolism and drug-drug interactions (DDIs) which directly impact drug efficacy and safety. It is well-established that inhibition of DMEs and DTs often leads to adverse drug reactions (ADRs) and therapeutic failure. As such, early prediction of such inhibitors is vital in drug development. In this context, the limitations of the traditional in vitro assays and QSAR models methods have been addressed by harnessing artificial intelligence (AI) techniques. This narrative review presents the insights gained from the application of AI for predicting DME and DT inhibitors over the past decade. Several case studies demonstrate successful AI applications in enzyme-transporter interaction prediction, and the authors discuss workflows for integrating these predictions into drug design and regulatory frameworks. The application of AI in predicting DME and DT inhibitors has demonstrated significant potential toward enhancing drug safety and effectiveness. However, critical challenges involve the data quality, biases, and model transparency. The availability of diverse, high-quality datasets alongside the integration of pharmacokinetic and genomic data are essential. Lastly, the collaboration among computational scientists, pharmacologists, and regulatory bodies is pyramidal in tailoring AI tools for personalized medicine and safer drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助灵巧天玉采纳,获得10
刚刚
皇家搓澡师完成签到,获得积分10
1秒前
1秒前
1秒前
啊杨丶完成签到,获得积分20
3秒前
发nature完成签到 ,获得积分10
3秒前
岫末大人发布了新的文献求助20
3秒前
毛毛完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
Preseverance完成签到,获得积分10
5秒前
5秒前
ZYA1999完成签到,获得积分10
5秒前
科研通AI5应助loveyourself采纳,获得10
5秒前
尊敬的焦完成签到,获得积分10
5秒前
科研通AI5应助DD采纳,获得10
6秒前
桃花嫣然完成签到,获得积分10
6秒前
完美世界应助Unique采纳,获得10
6秒前
秀丽映阳完成签到,获得积分10
7秒前
7秒前
曾经的醉冬关注了科研通微信公众号
7秒前
gemini0615发布了新的文献求助10
7秒前
做不了一点科研完成签到,获得积分10
8秒前
斯文的小旋风完成签到,获得积分0
8秒前
9秒前
随意完成签到,获得积分10
9秒前
亚李发布了新的文献求助10
9秒前
咩咩咩咩完成签到,获得积分10
10秒前
炖地瓜完成签到,获得积分10
10秒前
JamesPei应助inin采纳,获得10
11秒前
amateur发布了新的文献求助10
11秒前
Accept2024发布了新的文献求助10
11秒前
Jasper应助123采纳,获得10
11秒前
叶子发布了新的文献求助20
12秒前
yh完成签到 ,获得积分10
13秒前
JACK完成签到,获得积分10
13秒前
14秒前
慕青应助潇洒映冬采纳,获得10
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767565
求助须知:如何正确求助?哪些是违规求助? 3312194
关于积分的说明 10162593
捐赠科研通 3027488
什么是DOI,文献DOI怎么找? 1661538
邀请新用户注册赠送积分活动 794088
科研通“疑难数据库(出版商)”最低求助积分说明 755998