子宫内膜癌
医学
荟萃分析
科克伦图书馆
分级(工程)
诊断优势比
梅德林
妇科
接收机工作特性
系统回顾
癌症
医学物理学
肿瘤科
内科学
土木工程
法学
工程类
政治学
作者
Jiang Junjie,Zeyu Wang,Bowei Zhao,Kai Wang,Jingying Zheng,Lijing Zhao
摘要
Background Endometrial cancer is one of the most common gynecological tumors, and early screening and diagnosis are crucial for its treatment. Research on the application of artificial intelligence (AI) in the diagnosis of endometrial cancer is increasing, but there is currently no comprehensive meta-analysis to evaluate the diagnostic accuracy of AI in screening for endometrial cancer. Objective This paper presents a systematic review of AI-based endometrial cancer screening, which is needed to clarify its diagnostic accuracy and provide evidence for the application of AI technology in screening for endometrial cancer. Methods A search was conducted across PubMed, Embase, Cochrane Library, Web of Science, and Scopus databases to include studies published in English, which evaluated the performance of AI in endometrial cancer screening. A total of 2 independent reviewers screened the titles and abstracts, and the quality of the selected studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies—2 (QUADAS-2) tool. The certainty of the diagnostic test evidence was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. Results A total of 13 studies were included, and the hierarchical summary receiver operating characteristic model used for the meta-analysis showed that the overall sensitivity of AI-based endometrial cancer screening was 86% (95% CI 79%-90%) and specificity was 92% (95% CI 87%-95%). Subgroup analysis revealed similar results across AI type, study region, publication year, and study type, but the overall quality of evidence was low. Conclusions AI-based endometrial cancer screening can effectively detect patients with endometrial cancer, but large-scale population studies are needed in the future to further clarify the diagnostic accuracy of AI in screening for endometrial cancer. Trial Registration PROSPERO CRD42024519835; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024519835
科研通智能强力驱动
Strongly Powered by AbleSci AI