A Surface-Enhanced Raman Spectroscopy Platform Integrating Dual Signal Enhancement and Machine Learning for Rapid Detection of Veterinary Drug Residues in Meat Products

材料科学 表面增强拉曼光谱 拉曼光谱 兽药 色谱法 化学 拉曼散射 光学 物理
作者
Yunpeng Wang,Chengming Li,Yang Yang,Chaochao Ma,Xiaojiao Zhao,Jiacheng Li,Lin Wei,Yang Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c21938
摘要

The detection and quantification of veterinary drug residues in meat remain a significant challenge due to the complex background interference inherent to the meat matrix, which compromises the stability and accuracy of spectroscopic analysis. This study introduces an advanced label-free surface-enhanced Raman spectroscopy (SERS) platform for the precise identification and quantification of veterinary drugs. By employing a dual enhancement strategy involving sodium borohydride activation and calcium ion-deuterium oxide guidance, this platform achieves the efficient capture and signal amplification of drug molecules on highly active nanoparticles. High-quality SERS spectra were obtained for carprofen, doxycycline hydrochloride, chloramphenicol, and penicillin G sodium salt, enabling accurate classification and interference suppression. In addition, the application of machine learning algorithms, including PCA-LDA, heatmap, and decision tree modeling, allows for accurate differentiation of mixed drug samples. Quantitative analyses in meat samples were achieved through Raman intensity ratios and multivariate curve resolution-alternate least-squares (MCR-ALS) analysis, with results showing high consistency with high-performance liquid chromatography (HPLC) measurements. These findings highlight the potential of this SERS-based platform for accurate and rapid detection of multicomponent veterinary drug residues in complex food matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小白发布了新的文献求助10
刚刚
cj完成签到,获得积分10
刚刚
jingjingbang发布了新的文献求助10
1秒前
blue完成签到,获得积分0
1秒前
2秒前
Lam完成签到,获得积分10
2秒前
小灰灰发布了新的文献求助10
3秒前
3秒前
3秒前
充电宝应助怀忑采纳,获得10
3秒前
JamesPei应助科研喜剧人采纳,获得10
3秒前
Aurora发布了新的文献求助10
4秒前
联合国ffc完成签到 ,获得积分10
4秒前
CodeCraft应助vivichan7采纳,获得10
5秒前
orixero应助ruaruaburua采纳,获得10
6秒前
Yolo完成签到,获得积分10
6秒前
充电宝应助时尚纸鹤采纳,获得10
6秒前
Anonyme发布了新的文献求助10
7秒前
Akim应助Dan采纳,获得10
7秒前
寒冷的她发布了新的文献求助10
8秒前
漫山发布了新的文献求助10
8秒前
orixero应助gui采纳,获得10
8秒前
猪猪发布了新的文献求助10
8秒前
Elva发布了新的文献求助10
10秒前
10秒前
科研通AI5应助蓝灵采纳,获得10
11秒前
向宗奥发布了新的文献求助10
11秒前
11秒前
香蕉觅云应助璇22采纳,获得10
11秒前
12秒前
安静河马发布了新的文献求助10
13秒前
13秒前
体贴怜翠发布了新的文献求助10
14秒前
14秒前
Jasen发布了新的文献求助10
14秒前
15秒前
15秒前
星海完成签到,获得积分10
15秒前
英俊的铭应助songlf23采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542598
求助须知:如何正确求助?哪些是违规求助? 3119973
关于积分的说明 9341143
捐赠科研通 2818043
什么是DOI,文献DOI怎么找? 1549287
邀请新用户注册赠送积分活动 722093
科研通“疑难数据库(出版商)”最低求助积分说明 712928