亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Resting-state EEG network variability predicts individual working memory behavior

静息状态功能磁共振成像 工作记忆 动态功能连接 相关性 脑电图 计算机科学 认知 神经科学 心理学 认知心理学 数学 几何学
作者
Chunli Chen,Shiyun Xu,Jixuan Zhou,Chanlin Yi,Liang Yu,Dezhong Yao,Yangsong Zhang,Fali Li,Peng Xu
出处
期刊:NeuroImage [Elsevier BV]
卷期号:310: 121120-121120
标识
DOI:10.1016/j.neuroimage.2025.121120
摘要

Even during periods of rest, the brain exhibits spontaneous activity that dynamically fluctuates across spatially distributed regions in a globally coordinated manner, which has significant cognitive implications. However, the relationship between the temporal variability of resting-state networks and working memory (WM) remains largely unexplored. This study aims to address this gap by employing an EEG-based protocol combined with fuzzy entropy. First, we identified both flexible and robust patterns of dynamic resting-state networks. Subsequently, we observed a significant positive correlation between WM performance and network variability, particularly in connections associated with the frontal, right central, and right parietal lobes. Moreover, we found that the temporal variability of network properties was positively and significantly associated with WM performance. Additionally, distinct patterns of network variability were delineated, contributing to inter-individual differences in WM abilities, with these distinctions becoming more pronounced as task demands increased. Finally, using a multivariable predictive model based on these variability metrics, we effectively predicted individual WM performances. Notably, analogous analyses conducted in the source space validated the reproducibility of the temporal variability of resting-state networks in predicting individual WM behavior at higher spatial resolution, providing more precise anatomical localization of key brain regions. These results suggest that the temporal variability of resting-state networks reflects intrinsic dynamic changes in brain organization supporting WM and can serve as an objective predictor for individual WM behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oscar完成签到,获得积分10
21秒前
andrele应助科研通管家采纳,获得10
30秒前
MchemG应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
MchemG应助科研通管家采纳,获得10
30秒前
MchemG应助科研通管家采纳,获得10
30秒前
54秒前
57秒前
WHM25完成签到,获得积分10
1分钟前
顺利的小蚂蚁完成签到,获得积分10
1分钟前
FashionBoy应助害羞的采波采纳,获得10
1分钟前
Marciu33完成签到,获得积分10
1分钟前
TheaGao完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
twk发布了新的文献求助10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
大个应助twk采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
小杏韵发布了新的文献求助10
3分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
bonster应助科研通管家采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得150
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
回笼觉教主完成签到,获得积分20
4分钟前
aslink完成签到,获得积分10
4分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671265
求助须知:如何正确求助?哪些是违规求助? 3228122
关于积分的说明 9778510
捐赠科研通 2938378
什么是DOI,文献DOI怎么找? 1609969
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991