Prediction of Chromatographic Retention Time of a Small Molecule from SMILES Representation Using a Hybrid Transformer-LSTM Model

保留时间 变压器 代表(政治) 色谱法 计算机科学 人工智能 化学 工程类 电气工程 电压 政治 政治学 法学
作者
Sargol Mazraedoost,Hadi Sedigh Malekroodi,Petar Žuvela,Myunggi Yi,J. Jay Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00167
摘要

Accurate retention time (RT) prediction in liquid chromatography remains a significant consideration in molecular analysis. In this study, we explore the use of a transformer-based language model to predict RTs by treating simplified molecular input line entry system (SMILES) sequences as textual input, an approach that has not been previously utilized in this field. Our architecture combines a pretrained RoBERTa (robustly optimized BERT approach, a variant of BERT) with bidirectional long short-term memory (BiLSTM) networks to predict retention times in reversed-phase high-performance liquid chromatography (RP-HPLC). The METLIN small molecule retention time (SMRT) data set comprising 77,980 small molecules after preprocessing, was encoded using SMILES notation and processed through a tokenizer to enable molecular representation as sequential data. The proposed transformer-LSTM architecture incorporates layer fusion from multiple transformer layers and bidirectional sequence processing, achieving superior performance compared to existing methods with a mean absolute error (MAE) of 26.23 s, a mean absolute percentage error (MAPE) of 3.25%, and R-squared (R2) value of 0.91. The model's explainability was demonstrated through attention visualization, revealing its focus on key molecular features that can influence RT. Furthermore, we evaluated the model's transfer learning capabilities across ten data sets from the PredRet database, demonstrating robust performance across different chromatographic conditions with consistent improvement over previous approaches. Our results suggest that the hybrid model presents a valuable approach for predicting RT in liquid chromatography, with potential applications in metabolomics and small molecule analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
全圆佑的猫猫完成签到,获得积分10
2秒前
小马甲应助sdl采纳,获得10
5秒前
爱吃的小肚腩完成签到,获得积分10
5秒前
6秒前
JAYZHANG发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
9秒前
9秒前
汉堡包应助missinglotta采纳,获得10
10秒前
wys完成签到 ,获得积分10
11秒前
lulu发布了新的文献求助10
12秒前
12秒前
研友_VZG7GZ应助索李拉俊采纳,获得10
13秒前
十里长亭发布了新的文献求助10
13秒前
杨羊羊发布了新的文献求助10
14秒前
14秒前
14秒前
很酷鼓包完成签到,获得积分20
16秒前
16秒前
sdl发布了新的文献求助10
17秒前
tt完成签到 ,获得积分10
17秒前
提拉敏苏发布了新的文献求助10
19秒前
20秒前
21秒前
36456657发布了新的文献求助10
22秒前
23秒前
25秒前
rr发布了新的文献求助10
25秒前
26秒前
冷艳的小懒虫完成签到 ,获得积分10
26秒前
missinglotta发布了新的文献求助10
26秒前
王一完成签到 ,获得积分10
27秒前
刘翘铭完成签到,获得积分10
28秒前
28秒前
坚定的雁菱完成签到,获得积分10
29秒前
烟尘发布了新的文献求助10
30秒前
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730411
求助须知:如何正确求助?哪些是违规求助? 3275096
关于积分的说明 9991124
捐赠科研通 2990723
什么是DOI,文献DOI怎么找? 1641231
邀请新用户注册赠送积分活动 779610
科研通“疑难数据库(出版商)”最低求助积分说明 748331