替莫唑胺
胶质瘤
材料科学
体内
PEG比率
药代动力学
化学
生物医学工程
癌症研究
药理学
医学
生物
生物技术
财务
经济
作者
Yajing Wang,Ziwei Ding,Shiqun Lv,Jie Liu,Jie Pan,Yingcong Yu,Jun Gao,Xianfeng Huang
标识
DOI:10.1080/08982104.2023.2191718
摘要
tLyP-1 peptide is verified to recognize neuropilin (NRP) receptors overexpressed on the surface of both glioma cells and endothelial cells of angiogenic blood vessels. In the present study, tLyP-1 was conjugated with DSPE-PEG2000 to prepare tLyP-1-DSPE-PEG2000, which was further employed to prepare tLyP-1 functionalized nanoliposome (tLyP-1-Lip) to achieve enhancing target of glioblastoma. Process parameters were systematically studied to investigate the feasibility of tuning the internal water phase of nanoliposomes and encapsulating more Temozolomide (TMZ). The particle size, Zeta potential, and encapsulation efficiency of tLyP-1-Lip/TMZ were fully characterized in comparison with conventional nanoliposomes (Lip-TMZ) and PEGylated nanoliposomes (PEG-Lip/TMZ). The release behaviors of TMZ from PEG-Lip/TMZ and tLyP-1-Lip/TMZ are similar and slower than TMZ-Lip in acidic solutions. The tLyP-1-Lip/TMZ demonstrated the strongest cytotoxicity in comparison with TMZ-Lip and PEG-Lip/TMZ in both U87 and HT22 cells, and displayed the highest cellular internalization. The pharmacokinetic studies in rats revealed that tLyP-1-Lip/TMZ showed a 1.4-fold (p < 0.001) increase in AUCINF_obs and a 1.4-fold decrease (p < 0.01) in clearance compared with PEG-Lip/TMZ. We finally confirmed by in vivo imaging that tLyP-1-Lip were able to penetrate the brains and tumors of mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI