Fuzzy Ensemble Clustering Based on Self-Coassociation and Prototype Propagation

聚类分析 模糊聚类 相关聚类 计算机科学 数据挖掘 CURE数据聚类算法 人工智能 数据流聚类 模式识别(心理学) 火焰团簇 树冠聚类算法 共识聚类 机器学习
作者
Feijiang Li,Jieting Wang,Yuhua Qian,Guoqing Liu,Keqi Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (10): 3610-3623 被引量:5
标识
DOI:10.1109/tfuzz.2023.3262256
摘要

Fuzzy clustering ensemble that combines multiple fuzzy clustering results can obtain more robust, novel, stable, and consistent clustering result. The research about fuzzy clustering ensemble is still in the initial stage. Due to the special information expression, excellent clustering ideas are not well-practiced in fuzzy clustering ensemble and the performance of fuzzy clustering ensemble still has a large improvement space. In data clustering, prototype-based clustering is effective and efficient. The main idea of prototype-based clustering is discovering prototype samples to represent clusters and assigning samples to the represented clusters. In this article, we draw the idea of prototype-based clustering to fuzzy clustering ensemble and handle the problems of how to discover prototype samples based on a set of fuzzy clustering results and how to assign the samples without accessing the original data features. First, we propose a self-coassociation measure of a sample and discover its natural ability to evaluate the sample's local density. The rationality of the prototype samples discovered based on self-coassociation is theoretically analyzed and visually shown on eight artificial data sets. Then, we propose a prototype propagation method to assign data samples gradually. The working mechanism of the proposed sample assignment method is visually shown in the image segmentation scene. Finally, we develop a fuzzy clustering ensemble method based on self-coassociation and prototype propagation. The effectiveness of the proposed method is illustrated by comparing it with eight representative methods on benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白包完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
Abi发布了新的文献求助10
1秒前
可爱的函函应助zzw采纳,获得10
1秒前
2秒前
2秒前
念安完成签到,获得积分10
2秒前
potatozhou发布了新的文献求助10
3秒前
3秒前
3秒前
所所应助柏123采纳,获得10
4秒前
4秒前
Owen应助star采纳,获得10
5秒前
坚定青柏发布了新的文献求助10
5秒前
6秒前
赘婿应助自然青亦采纳,获得10
6秒前
学习吧澧发布了新的文献求助10
7秒前
另一种感觉完成签到,获得积分10
7秒前
研友_nxGqeL完成签到 ,获得积分10
7秒前
8秒前
Jackie完成签到,获得积分10
8秒前
微笑香薇发布了新的文献求助10
8秒前
8秒前
小骨头哒发布了新的文献求助10
9秒前
9秒前
9秒前
清脆南蕾完成签到,获得积分10
9秒前
balabala完成签到,获得积分10
10秒前
科目三应助开放的煎蛋采纳,获得10
10秒前
852应助长孙友容采纳,获得10
10秒前
爆米花应助li采纳,获得10
10秒前
11秒前
Akim应助YMAO采纳,获得10
11秒前
wanci应助风中的文龙采纳,获得10
11秒前
ipsjie发布了新的文献求助10
12秒前
奥利奥发布了新的文献求助10
12秒前
Leon完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246