Simultaneous sorption of orthophosphate and phosphonate from RO concentrate by kaolin/lanthanum carbonate composites: Experimental investigation and multi-objective artificial neural network modeling

吸附 膦酸盐 吸附剂 化学 磷酸盐 离子强度 动力学 化学工程 无机化学 吸附 有机化学 水溶液 物理 工程类 量子力学
作者
Jiazhi Yang,Xuejun Long,Xiaonan Feng,Jun Wan
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (3): 109776-109776 被引量:9
标识
DOI:10.1016/j.jece.2023.109776
摘要

Orthophosphate and phosphonate are the main phosphorus (P) species in membrane concentrate, and they should be removed before discharge to prevent eutrophication in the aquatic environment. A variety of factors affect orthophosphate and phosphonate removal performance, while their contribution to the sorption process in the complex environment was not clear. In this study, the novel kaolin/lanthanum carbonate (KLC) composites were prepared for the simultaneous sorption of phosphate and phosphonate, and their surface morphology and crystal structure were characterized. The sorption kinetics and isotherms results indicated the competitive sorption of orthophosphate and phosphonate on the surface of KLC. The two phosphorus species’ maximum sorption capacities were both achieved at the equilibrium pH around 4.9, and the ionic strength showed negligible effect on their sorption capacity. The sorption capacities and rates were applied to explore the effects of sorbent dosage, pH and co-existing ions on the sorption process. To predict the simultaneous orthophosphate and phosphonate removal performance under different conditions, a multi-objective artificial neural network (ANN) model was established based on seven input variables (dosage, reaction time, pH, and concentrations of SO42-, HCO3-, Ca2+ and Mg2+). The model was trained with experimental data, and could well predict the orthophosphate and phosphonate removal efficiency. In addition, the relative significance of these variables was also evaluated. This study provides a reliable ANN model to predict simultaneous orthophosphate and phosphonate removal, and insights into factors for phosphorus removal by Lanthanum-based sorbent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sallyshen完成签到 ,获得积分10
2秒前
运气爆棚发布了新的文献求助20
2秒前
2秒前
3秒前
汉堡包应助hd采纳,获得10
3秒前
liao应助ste采纳,获得10
4秒前
xxfsx应助ste采纳,获得10
4秒前
Shengang完成签到,获得积分10
5秒前
5秒前
二十一完成签到,获得积分10
6秒前
科研通AI6应助闫闫采纳,获得10
8秒前
硝基发布了新的文献求助10
8秒前
小二郎应助落花生采纳,获得20
9秒前
西西完成签到 ,获得积分10
9秒前
11秒前
11秒前
英姑应助小巧的若云采纳,获得10
11秒前
共享精神应助LL采纳,获得10
13秒前
李健的小迷弟应助肥鹤采纳,获得10
14秒前
彭于晏应助沈迎南采纳,获得10
14秒前
之之完成签到,获得积分10
14秒前
yy发布了新的文献求助30
16秒前
17秒前
CipherSage应助硝基采纳,获得10
17秒前
17秒前
18秒前
honghuhe发布了新的文献求助30
18秒前
852应助运气比较好采纳,获得10
18秒前
别管我了应助Joey采纳,获得30
19秒前
上官若男应助羞涩的寒松采纳,获得10
20秒前
情怀应助mouse_velocity采纳,获得10
21秒前
21秒前
21秒前
领导范儿应助牛牛采纳,获得10
22秒前
23秒前
1234发布了新的文献求助10
23秒前
23秒前
张姐发布了新的文献求助10
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474