Simultaneous sorption of orthophosphate and phosphonate from RO concentrate by kaolin/lanthanum carbonate composites: Experimental investigation and multi-objective artificial neural network modeling

吸附 膦酸盐 吸附剂 化学 磷酸盐 离子强度 动力学 化学工程 无机化学 吸附 有机化学 水溶液 工程类 物理 量子力学
作者
Jiazhi Yang,Xuejun Long,Xiaonan Feng,Jun Wan
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (3): 109776-109776 被引量:9
标识
DOI:10.1016/j.jece.2023.109776
摘要

Orthophosphate and phosphonate are the main phosphorus (P) species in membrane concentrate, and they should be removed before discharge to prevent eutrophication in the aquatic environment. A variety of factors affect orthophosphate and phosphonate removal performance, while their contribution to the sorption process in the complex environment was not clear. In this study, the novel kaolin/lanthanum carbonate (KLC) composites were prepared for the simultaneous sorption of phosphate and phosphonate, and their surface morphology and crystal structure were characterized. The sorption kinetics and isotherms results indicated the competitive sorption of orthophosphate and phosphonate on the surface of KLC. The two phosphorus species’ maximum sorption capacities were both achieved at the equilibrium pH around 4.9, and the ionic strength showed negligible effect on their sorption capacity. The sorption capacities and rates were applied to explore the effects of sorbent dosage, pH and co-existing ions on the sorption process. To predict the simultaneous orthophosphate and phosphonate removal performance under different conditions, a multi-objective artificial neural network (ANN) model was established based on seven input variables (dosage, reaction time, pH, and concentrations of SO42-, HCO3-, Ca2+ and Mg2+). The model was trained with experimental data, and could well predict the orthophosphate and phosphonate removal efficiency. In addition, the relative significance of these variables was also evaluated. This study provides a reliable ANN model to predict simultaneous orthophosphate and phosphonate removal, and insights into factors for phosphorus removal by Lanthanum-based sorbent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实的胡萝卜完成签到 ,获得积分10
1秒前
科研通AI6应助11采纳,获得10
1秒前
1秒前
2秒前
elgar612发布了新的文献求助10
2秒前
英姑应助软包电芯采纳,获得10
3秒前
sy123发布了新的文献求助10
6秒前
U123456完成签到,获得积分10
6秒前
6秒前
7秒前
zhzhzh完成签到,获得积分10
8秒前
wwewew完成签到,获得积分10
8秒前
研友_VZG7GZ应助wlywdb采纳,获得10
8秒前
9秒前
11秒前
Antheali应助妄想狂采纳,获得10
12秒前
爆米花应助大气涫采纳,获得10
12秒前
WGS发布了新的文献求助30
12秒前
12秒前
小森发布了新的文献求助10
12秒前
shangyu66完成签到,获得积分10
13秒前
noflatterer完成签到,获得积分10
14秒前
研友_enPJa8发布了新的文献求助10
14秒前
Truman发布了新的文献求助10
14秒前
bgt发布了新的文献求助10
16秒前
ljys发布了新的文献求助10
17秒前
miao发布了新的文献求助10
17秒前
小美女完成签到 ,获得积分10
19秒前
19秒前
风中墨镜关注了科研通微信公众号
19秒前
着急的小松鼠完成签到,获得积分10
19秒前
20秒前
donnolea完成签到 ,获得积分10
20秒前
jtksbf完成签到 ,获得积分10
20秒前
blink_gmx完成签到,获得积分10
21秒前
21秒前
boxi完成签到,获得积分10
23秒前
Wind0240完成签到 ,获得积分10
23秒前
Truman完成签到,获得积分10
24秒前
Bryce完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565407
求助须知:如何正确求助?哪些是违规求助? 4650389
关于积分的说明 14691103
捐赠科研通 4592283
什么是DOI,文献DOI怎么找? 2519578
邀请新用户注册赠送积分活动 1491994
关于科研通互助平台的介绍 1463199