Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study

医学 乳腺癌 新辅助治疗 肿瘤科 乳房磁振造影 三阴性乳腺癌 阶段(地层学) 人工智能 内科学 机器学习 癌症 乳腺摄影术 计算机科学 生物 古生物学
作者
Yühong Huang,Teng Zhu,Xiaoling Zhang,Wei Li,XingXing Zheng,Minyi Cheng,Fei Ji,LiuLu Zhang,Ciqiu Yang,Zhi‐Yong Wu,GuoLin Ye,Ying Lin,Kun Wang
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:58: 101899-101899 被引量:102
标识
DOI:10.1016/j.eclinm.2023.101899
摘要

Accurate identification of pCR to neoadjuvant chemotherapy (NAC) is essential for determining appropriate surgery strategy and guiding resection extent in breast cancer. However, a non-invasive tool to predict pCR accurately is lacking. Our study aims to develop ensemble learning models using longitudinal multiparametric MRI to predict pCR in breast cancer.From July 2015 to December 2021, we collected pre-NAC and post-NAC multiparametric MRI sequences per patient. We then extracted 14,676 radiomics and 4096 deep learning features and calculated additional delta-value features. In the primary cohort (n = 409), the inter-class correlation coefficient test, U-test, Boruta and the least absolute shrinkage and selection operator regression were used to select the most significant features for each subtype of breast cancer. Five machine learning classifiers were then developed to predict pCR accurately for each subtype. The ensemble learning strategy was used to integrate the single-modality models. The diagnostic performances of models were evaluated in the three external cohorts (n = 343, 170 and 340, respectively).A total of 1262 patients with breast cancer from four centers were enrolled in this study, and pCR rates were 10.6% (52/491), 54.3% (323/595) and 37.5% (66/176) in HR+/HER2-, HER2+ and TNBC subtype, respectively. Finally, 20, 15 and 13 features were selected to construct the machine learning models in HR+/HER2-, HER2+ and TNBC subtypes, respectively. The multi-Layer Perception (MLP) yields the best diagnostic performances in all subtypes. For the three subtypes, the stacking model integrating pre-, post- and delta-models yielded the highest AUCs of 0.959, 0.974 and 0.958 in the primary cohort, and AUCs of 0.882-0.908, 0.896-0.929 and 0.837-0.901 in the external validation cohorts, respectively. The stacking model had accuracies of 85.0%-88.9%, sensitivities of 80.0%-86.3%, and specificities of 87.4%-91.5% in the external validation cohorts.Our study established a novel tool to predict the responses of breast cancer to NAC and achieve excellent performance. The models could help to determine post-NAC surgery strategy for breast cancer.This study is supported by grants from the National Natural Science Foundation of China (82171898, 82103093), the Deng Feng project of high-level hospital construction (DFJHBF202109), the Guangdong Basic and Applied Basic Research Foundation (grant number, 2020A1515010346, 2022A1515012277), the Science and Technology Planning Project of Guangzhou City (202002030236), the Beijing Medical Award Foundation (YXJL-2020-0941-0758), and the Beijing Science and Technology Innovation Medical Development Foundation (KC2022-ZZ-0091-5). Funding sources were not involved in the study design, data collection, analysis and interpretation, writing of the report, or decision to submit the article for publication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王讯完成签到,获得积分10
刚刚
1秒前
1秒前
aaa发布了新的文献求助30
1秒前
99v587完成签到,获得积分10
1秒前
包容若风完成签到,获得积分10
1秒前
灵剑山完成签到 ,获得积分10
2秒前
盒子年糕应助常冬寒采纳,获得20
2秒前
xuxu完成签到,获得积分10
2秒前
FashionBoy应助过儿采纳,获得10
2秒前
orixero应助包包采纳,获得10
2秒前
烟花应助sxp1031采纳,获得10
3秒前
小福发布了新的文献求助10
3秒前
3秒前
xiaowannamoney完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
平常的老头完成签到,获得积分10
3秒前
yui完成签到,获得积分10
4秒前
旷意发布了新的文献求助10
5秒前
洁净的易巧完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
Cactus发布了新的文献求助10
7秒前
KINDMAGIC发布了新的文献求助10
7秒前
7秒前
linxi完成签到,获得积分10
7秒前
yangtao199发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
Hester完成签到,获得积分0
9秒前
Neuro_dan完成签到,获得积分0
9秒前
123发布了新的文献求助10
9秒前
豆豆可完成签到,获得积分10
11秒前
标致的坤完成签到,获得积分10
11秒前
巨人肩上完成签到,获得积分10
11秒前
精明凡双应助lemonyu采纳,获得10
11秒前
Cactus发布了新的文献求助10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598884
求助须知:如何正确求助?哪些是违规求助? 4009687
关于积分的说明 12413038
捐赠科研通 3689309
什么是DOI,文献DOI怎么找? 2033794
邀请新用户注册赠送积分活动 1066934
科研通“疑难数据库(出版商)”最低求助积分说明 952021