Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study

医学 乳腺癌 新辅助治疗 肿瘤科 乳房磁振造影 三阴性乳腺癌 阶段(地层学) 人工智能 内科学 机器学习 癌症 乳腺摄影术 计算机科学 生物 古生物学
作者
Yühong Huang,Teng Zhu,Xiaoling Zhang,Wei Li,XingXing Zheng,Minyi Cheng,Fei Ji,LiuLu Zhang,Ciqiu Yang,Zhi‐Yong Wu,GuoLin Ye,Ying Lin,Kun Wang
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:58: 101899-101899 被引量:67
标识
DOI:10.1016/j.eclinm.2023.101899
摘要

Accurate identification of pCR to neoadjuvant chemotherapy (NAC) is essential for determining appropriate surgery strategy and guiding resection extent in breast cancer. However, a non-invasive tool to predict pCR accurately is lacking. Our study aims to develop ensemble learning models using longitudinal multiparametric MRI to predict pCR in breast cancer.From July 2015 to December 2021, we collected pre-NAC and post-NAC multiparametric MRI sequences per patient. We then extracted 14,676 radiomics and 4096 deep learning features and calculated additional delta-value features. In the primary cohort (n = 409), the inter-class correlation coefficient test, U-test, Boruta and the least absolute shrinkage and selection operator regression were used to select the most significant features for each subtype of breast cancer. Five machine learning classifiers were then developed to predict pCR accurately for each subtype. The ensemble learning strategy was used to integrate the single-modality models. The diagnostic performances of models were evaluated in the three external cohorts (n = 343, 170 and 340, respectively).A total of 1262 patients with breast cancer from four centers were enrolled in this study, and pCR rates were 10.6% (52/491), 54.3% (323/595) and 37.5% (66/176) in HR+/HER2-, HER2+ and TNBC subtype, respectively. Finally, 20, 15 and 13 features were selected to construct the machine learning models in HR+/HER2-, HER2+ and TNBC subtypes, respectively. The multi-Layer Perception (MLP) yields the best diagnostic performances in all subtypes. For the three subtypes, the stacking model integrating pre-, post- and delta-models yielded the highest AUCs of 0.959, 0.974 and 0.958 in the primary cohort, and AUCs of 0.882-0.908, 0.896-0.929 and 0.837-0.901 in the external validation cohorts, respectively. The stacking model had accuracies of 85.0%-88.9%, sensitivities of 80.0%-86.3%, and specificities of 87.4%-91.5% in the external validation cohorts.Our study established a novel tool to predict the responses of breast cancer to NAC and achieve excellent performance. The models could help to determine post-NAC surgery strategy for breast cancer.This study is supported by grants from the National Natural Science Foundation of China (82171898, 82103093), the Deng Feng project of high-level hospital construction (DFJHBF202109), the Guangdong Basic and Applied Basic Research Foundation (grant number, 2020A1515010346, 2022A1515012277), the Science and Technology Planning Project of Guangzhou City (202002030236), the Beijing Medical Award Foundation (YXJL-2020-0941-0758), and the Beijing Science and Technology Innovation Medical Development Foundation (KC2022-ZZ-0091-5). Funding sources were not involved in the study design, data collection, analysis and interpretation, writing of the report, or decision to submit the article for publication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尽我所能发布了新的文献求助10
刚刚
刚刚
。。。。发布了新的文献求助10
刚刚
刚刚
hs发布了新的文献求助10
刚刚
sunsun完成签到,获得积分10
1秒前
杨一发布了新的文献求助10
2秒前
2秒前
欣喜石头完成签到 ,获得积分10
2秒前
量子世界小居民完成签到,获得积分20
2秒前
MM完成签到,获得积分10
2秒前
3秒前
3秒前
史夏兰完成签到,获得积分10
4秒前
一蓑烟雨任平生应助菠萝采纳,获得10
4秒前
李爱国应助qll采纳,获得10
5秒前
科研通AI5应助fisher采纳,获得30
5秒前
5秒前
思源应助xiaobai采纳,获得10
5秒前
6秒前
英姑应助量子世界小居民采纳,获得10
6秒前
QIANGQIANG发布了新的文献求助30
6秒前
6秒前
天天快乐应助Hua采纳,获得10
7秒前
Wind发布了新的文献求助10
7秒前
holo完成签到,获得积分10
8秒前
8秒前
李健的小迷弟应助七七七采纳,获得10
8秒前
科研通AI5应助成阳采纳,获得10
8秒前
VENTUS完成签到,获得积分10
10秒前
10秒前
hs完成签到,获得积分10
10秒前
可靠月亮发布了新的文献求助10
10秒前
11秒前
黄磊发布了新的文献求助10
11秒前
12秒前
双双完成签到,获得积分10
12秒前
12秒前
13秒前
八段锦完成签到 ,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3765323
求助须知:如何正确求助?哪些是违规求助? 3309825
关于积分的说明 10152134
捐赠科研通 3025137
什么是DOI,文献DOI怎么找? 1660434
邀请新用户注册赠送积分活动 793237
科研通“疑难数据库(出版商)”最低求助积分说明 755495