Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study

医学 乳腺癌 新辅助治疗 肿瘤科 乳房磁振造影 三阴性乳腺癌 阶段(地层学) 人工智能 内科学 机器学习 癌症 乳腺摄影术 计算机科学 生物 古生物学
作者
Yühong Huang,Teng Zhu,Xiaoling Zhang,Wei Li,XingXing Zheng,Minyi Cheng,Fei Ji,LiuLu Zhang,Ciqiu Yang,Zhi‐Yong Wu,GuoLin Ye,Ying Lin,Kun Wang
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:58: 101899-101899 被引量:102
标识
DOI:10.1016/j.eclinm.2023.101899
摘要

Accurate identification of pCR to neoadjuvant chemotherapy (NAC) is essential for determining appropriate surgery strategy and guiding resection extent in breast cancer. However, a non-invasive tool to predict pCR accurately is lacking. Our study aims to develop ensemble learning models using longitudinal multiparametric MRI to predict pCR in breast cancer.From July 2015 to December 2021, we collected pre-NAC and post-NAC multiparametric MRI sequences per patient. We then extracted 14,676 radiomics and 4096 deep learning features and calculated additional delta-value features. In the primary cohort (n = 409), the inter-class correlation coefficient test, U-test, Boruta and the least absolute shrinkage and selection operator regression were used to select the most significant features for each subtype of breast cancer. Five machine learning classifiers were then developed to predict pCR accurately for each subtype. The ensemble learning strategy was used to integrate the single-modality models. The diagnostic performances of models were evaluated in the three external cohorts (n = 343, 170 and 340, respectively).A total of 1262 patients with breast cancer from four centers were enrolled in this study, and pCR rates were 10.6% (52/491), 54.3% (323/595) and 37.5% (66/176) in HR+/HER2-, HER2+ and TNBC subtype, respectively. Finally, 20, 15 and 13 features were selected to construct the machine learning models in HR+/HER2-, HER2+ and TNBC subtypes, respectively. The multi-Layer Perception (MLP) yields the best diagnostic performances in all subtypes. For the three subtypes, the stacking model integrating pre-, post- and delta-models yielded the highest AUCs of 0.959, 0.974 and 0.958 in the primary cohort, and AUCs of 0.882-0.908, 0.896-0.929 and 0.837-0.901 in the external validation cohorts, respectively. The stacking model had accuracies of 85.0%-88.9%, sensitivities of 80.0%-86.3%, and specificities of 87.4%-91.5% in the external validation cohorts.Our study established a novel tool to predict the responses of breast cancer to NAC and achieve excellent performance. The models could help to determine post-NAC surgery strategy for breast cancer.This study is supported by grants from the National Natural Science Foundation of China (82171898, 82103093), the Deng Feng project of high-level hospital construction (DFJHBF202109), the Guangdong Basic and Applied Basic Research Foundation (grant number, 2020A1515010346, 2022A1515012277), the Science and Technology Planning Project of Guangzhou City (202002030236), the Beijing Medical Award Foundation (YXJL-2020-0941-0758), and the Beijing Science and Technology Innovation Medical Development Foundation (KC2022-ZZ-0091-5). Funding sources were not involved in the study design, data collection, analysis and interpretation, writing of the report, or decision to submit the article for publication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDDDDU发布了新的文献求助30
1秒前
1秒前
2秒前
Zzl0281发布了新的文献求助10
2秒前
清爽冰夏发布了新的文献求助10
5秒前
6秒前
6秒前
蓝莓西西果冻完成签到 ,获得积分10
8秒前
9秒前
丘比特应助小时采纳,获得10
9秒前
无尽夏发布了新的文献求助10
10秒前
爆米花应助tw0125采纳,获得10
10秒前
cyt9999发布了新的文献求助20
11秒前
11秒前
whatever完成签到,获得积分10
12秒前
12秒前
故意的严青完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
14秒前
Gump发布了新的文献求助10
14秒前
搞怪灯泡完成签到,获得积分10
15秒前
比耶发布了新的文献求助10
15秒前
16秒前
无尽夏完成签到,获得积分10
18秒前
晓晓马儿发布了新的文献求助10
18秒前
大个应助陈陈采纳,获得10
18秒前
今昔完成签到,获得积分10
18秒前
19秒前
cy发布了新的文献求助10
19秒前
20秒前
追梦完成签到,获得积分10
20秒前
经过发布了新的文献求助10
20秒前
20秒前
曲鸿博发布了新的文献求助10
20秒前
cyt9999完成签到,获得积分10
21秒前
清爽冰夏完成签到,获得积分20
21秒前
CipherSage应助SSS采纳,获得10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003393
求助须知:如何正确求助?哪些是违规求助? 4248127
关于积分的说明 13235358
捐赠科研通 4047157
什么是DOI,文献DOI怎么找? 2214214
邀请新用户注册赠送积分活动 1224290
关于科研通互助平台的介绍 1144540