亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study

医学 乳腺癌 新辅助治疗 肿瘤科 乳房磁振造影 三阴性乳腺癌 阶段(地层学) 人工智能 内科学 机器学习 癌症 乳腺摄影术 计算机科学 生物 古生物学
作者
Yühong Huang,Teng Zhu,Xiaoling Zhang,Wei Li,XingXing Zheng,Minyi Cheng,Fei Ji,LiuLu Zhang,Ciqiu Yang,Zhi‐Yong Wu,GuoLin Ye,Ying Lin,Kun Wang
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:58: 101899-101899 被引量:46
标识
DOI:10.1016/j.eclinm.2023.101899
摘要

Accurate identification of pCR to neoadjuvant chemotherapy (NAC) is essential for determining appropriate surgery strategy and guiding resection extent in breast cancer. However, a non-invasive tool to predict pCR accurately is lacking. Our study aims to develop ensemble learning models using longitudinal multiparametric MRI to predict pCR in breast cancer.From July 2015 to December 2021, we collected pre-NAC and post-NAC multiparametric MRI sequences per patient. We then extracted 14,676 radiomics and 4096 deep learning features and calculated additional delta-value features. In the primary cohort (n = 409), the inter-class correlation coefficient test, U-test, Boruta and the least absolute shrinkage and selection operator regression were used to select the most significant features for each subtype of breast cancer. Five machine learning classifiers were then developed to predict pCR accurately for each subtype. The ensemble learning strategy was used to integrate the single-modality models. The diagnostic performances of models were evaluated in the three external cohorts (n = 343, 170 and 340, respectively).A total of 1262 patients with breast cancer from four centers were enrolled in this study, and pCR rates were 10.6% (52/491), 54.3% (323/595) and 37.5% (66/176) in HR+/HER2-, HER2+ and TNBC subtype, respectively. Finally, 20, 15 and 13 features were selected to construct the machine learning models in HR+/HER2-, HER2+ and TNBC subtypes, respectively. The multi-Layer Perception (MLP) yields the best diagnostic performances in all subtypes. For the three subtypes, the stacking model integrating pre-, post- and delta-models yielded the highest AUCs of 0.959, 0.974 and 0.958 in the primary cohort, and AUCs of 0.882-0.908, 0.896-0.929 and 0.837-0.901 in the external validation cohorts, respectively. The stacking model had accuracies of 85.0%-88.9%, sensitivities of 80.0%-86.3%, and specificities of 87.4%-91.5% in the external validation cohorts.Our study established a novel tool to predict the responses of breast cancer to NAC and achieve excellent performance. The models could help to determine post-NAC surgery strategy for breast cancer.This study is supported by grants from the National Natural Science Foundation of China (82171898, 82103093), the Deng Feng project of high-level hospital construction (DFJHBF202109), the Guangdong Basic and Applied Basic Research Foundation (grant number, 2020A1515010346, 2022A1515012277), the Science and Technology Planning Project of Guangzhou City (202002030236), the Beijing Medical Award Foundation (YXJL-2020-0941-0758), and the Beijing Science and Technology Innovation Medical Development Foundation (KC2022-ZZ-0091-5). Funding sources were not involved in the study design, data collection, analysis and interpretation, writing of the report, or decision to submit the article for publication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Enso发布了新的文献求助10
2秒前
2秒前
4秒前
7秒前
含蓄戾发布了新的文献求助10
8秒前
搜集达人应助无辜的安波采纳,获得10
9秒前
高强发布了新的文献求助10
13秒前
AR完成签到 ,获得积分20
17秒前
李健的小迷弟应助Langsam采纳,获得10
20秒前
24秒前
27秒前
30秒前
小肖的KYT应助神奇大药丸采纳,获得10
33秒前
33秒前
Ettie完成签到,获得积分10
33秒前
呆瓜完成签到,获得积分10
40秒前
可爱航发布了新的文献求助10
46秒前
49秒前
斯文败类应助mrwill采纳,获得10
51秒前
53秒前
科研强完成签到 ,获得积分10
57秒前
59秒前
59秒前
mrwill发布了新的文献求助10
1分钟前
可爱航完成签到 ,获得积分20
1分钟前
1分钟前
mrwill完成签到,获得积分10
1分钟前
1分钟前
瀛瀛完成签到 ,获得积分10
1分钟前
LK完成签到 ,获得积分10
1分钟前
alien52发布了新的文献求助10
1分钟前
谁将新樽乘旧月完成签到 ,获得积分10
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得30
1分钟前
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
传奇3应助爱读书的嘟嘟采纳,获得10
1分钟前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801865
关于积分的说明 7845847
捐赠科研通 2459209
什么是DOI,文献DOI怎么找? 1309091
科研通“疑难数据库(出版商)”最低求助积分说明 628651
版权声明 601727