已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-Learning-Enabled Direct Detection With Reduced Computational Complexity and High Electrical-Spectral-Efficiency

计算机科学 计算复杂性理论 零差检测 正交调幅 光谱效率 电子工程 物理 光学 算法 电信 波束赋形 工程类 解码方法 误码率
作者
Xingfeng Li,Jingchi Li,Shaohua An,Hudi Liu,William Shieh,Yikai Su
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:41 (17): 5495-5502 被引量:1
标识
DOI:10.1109/jlt.2023.3263640
摘要

Complex-valued double-sideband (CV-DSB) direct detection (DD) is a promising solution for high capacity and cost-sensitive data center interconnects, since it can reconstruct the optical field as a homodyne coherent receiver while does not require a costly local oscillator laser. In a carrier-assisted CV-DSB DD system, the carrier occupies a large proportion of the total optical signal power but bears no information. Reducing the carrier to signal power ratio (CSPR) can improve the information-bearing signal power and thus maximize the achievable system performance. Recently, we have proposed and demonstrated a deep-learning-enabled DD (DLEDD) scheme to reconstruct the full-field of the CV-DSB signal. In the DLEDD scheme, the optical CV-DSB signal was detected by a dispersion-diversity receiver and then recovered by a deep convolutional neural network (CNN). Nevertheless, the computational complexity of the deep CNN is the main obstacle to the application of the DLEDD scheme. In this paper, we demonstrate a 50-GBaud CV-DSB 32-ary quadrature amplitude modulation (32-QAM) signal transmission over 80-km single-mode fiber with ∼64% computational-budget reduction in the field reconstruction. This is achieved by using 1×1 convolutions to attain a sparse dimensionality (in particular the number of channels) of the deep CNN. To the best of our knowledge, we achieve the highest electrical spectral efficiency of 7.07 b/s/Hz per polarization per wavelength for a CV-DSB DD receiver without requiring a sharp-roll-off optical filter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PDE完成签到,获得积分10
刚刚
得唔闻完成签到 ,获得积分10
5秒前
Cc完成签到 ,获得积分10
8秒前
盆栽完成签到,获得积分10
8秒前
无花果应助蟹老板的crab采纳,获得10
9秒前
12秒前
无语的巨人完成签到 ,获得积分10
13秒前
寂寞的尔丝完成签到 ,获得积分10
13秒前
科目三应助Oaizil采纳,获得30
14秒前
18秒前
英俊的铭应助阿迦采纳,获得10
18秒前
充电宝应助蜡笔小昕采纳,获得10
20秒前
tyun完成签到 ,获得积分10
20秒前
hui完成签到 ,获得积分10
22秒前
22秒前
董小鱼应助黑米粥采纳,获得10
23秒前
小二郎应助黑米粥采纳,获得10
23秒前
搜集达人应助黑米粥采纳,获得10
23秒前
田様应助黑米粥采纳,获得10
23秒前
搜集达人应助黑米粥采纳,获得30
23秒前
深情安青应助黑米粥采纳,获得10
23秒前
竹筏过海应助黑米粥采纳,获得30
23秒前
刘浩发布了新的文献求助30
24秒前
25秒前
星辰大海应助科研通管家采纳,获得10
27秒前
pluto应助科研通管家采纳,获得10
27秒前
pluto应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
pluto应助科研通管家采纳,获得10
27秒前
ccm应助科研通管家采纳,获得10
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
田様应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564710
关于积分的说明 14296681
捐赠科研通 4489782
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511