Deep-Learning-Enabled Direct Detection With Reduced Computational Complexity and High Electrical-Spectral-Efficiency

计算机科学 计算复杂性理论 零差检测 正交调幅 光谱效率 电子工程 物理 光学 算法 电信 波束赋形 工程类 解码方法 误码率
作者
Xingfeng Li,Jingchi Li,Shaohua An,Hudi Liu,William Shieh,Yikai Su
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:41 (17): 5495-5502 被引量:1
标识
DOI:10.1109/jlt.2023.3263640
摘要

Complex-valued double-sideband (CV-DSB) direct detection (DD) is a promising solution for high capacity and cost-sensitive data center interconnects, since it can reconstruct the optical field as a homodyne coherent receiver while does not require a costly local oscillator laser. In a carrier-assisted CV-DSB DD system, the carrier occupies a large proportion of the total optical signal power but bears no information. Reducing the carrier to signal power ratio (CSPR) can improve the information-bearing signal power and thus maximize the achievable system performance. Recently, we have proposed and demonstrated a deep-learning-enabled DD (DLEDD) scheme to reconstruct the full-field of the CV-DSB signal. In the DLEDD scheme, the optical CV-DSB signal was detected by a dispersion-diversity receiver and then recovered by a deep convolutional neural network (CNN). Nevertheless, the computational complexity of the deep CNN is the main obstacle to the application of the DLEDD scheme. In this paper, we demonstrate a 50-GBaud CV-DSB 32-ary quadrature amplitude modulation (32-QAM) signal transmission over 80-km single-mode fiber with ∼64% computational-budget reduction in the field reconstruction. This is achieved by using 1×1 convolutions to attain a sparse dimensionality (in particular the number of channels) of the deep CNN. To the best of our knowledge, we achieve the highest electrical spectral efficiency of 7.07 b/s/Hz per polarization per wavelength for a CV-DSB DD receiver without requiring a sharp-roll-off optical filter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Captainhana发布了新的文献求助10
刚刚
1秒前
yyy完成签到 ,获得积分10
2秒前
3秒前
香菜完成签到,获得积分10
3秒前
小二郎应助lhy采纳,获得10
4秒前
细小完成签到,获得积分10
5秒前
FashionBoy应助zimo采纳,获得10
5秒前
5秒前
今后应助kid采纳,获得10
6秒前
6秒前
Brown完成签到,获得积分10
7秒前
zzz发布了新的文献求助10
7秒前
xiaoliu完成签到,获得积分10
8秒前
8秒前
9秒前
dglyl发布了新的文献求助10
9秒前
科研通AI6应助lc采纳,获得10
10秒前
11秒前
自觉的丹珍完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
崽崽发布了新的文献求助10
14秒前
无花果应助背后的广山采纳,获得10
14秒前
共享精神应助小白采纳,获得10
14秒前
14秒前
ZL完成签到,获得积分10
15秒前
淡然冬灵发布了新的文献求助10
15秒前
营长完成签到 ,获得积分10
15秒前
15秒前
15秒前
diguohu发布了新的文献求助10
16秒前
18秒前
red发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858