清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep-Learning-Enabled Direct Detection With Reduced Computational Complexity and High Electrical-Spectral-Efficiency

计算机科学 计算复杂性理论 零差检测 正交调幅 光谱效率 电子工程 物理 光学 算法 电信 波束赋形 工程类 解码方法 误码率
作者
Xingfeng Li,Jingchi Li,Shaohua An,Hudi Liu,William Shieh,Yikai Su
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:41 (17): 5495-5502 被引量:1
标识
DOI:10.1109/jlt.2023.3263640
摘要

Complex-valued double-sideband (CV-DSB) direct detection (DD) is a promising solution for high capacity and cost-sensitive data center interconnects, since it can reconstruct the optical field as a homodyne coherent receiver while does not require a costly local oscillator laser. In a carrier-assisted CV-DSB DD system, the carrier occupies a large proportion of the total optical signal power but bears no information. Reducing the carrier to signal power ratio (CSPR) can improve the information-bearing signal power and thus maximize the achievable system performance. Recently, we have proposed and demonstrated a deep-learning-enabled DD (DLEDD) scheme to reconstruct the full-field of the CV-DSB signal. In the DLEDD scheme, the optical CV-DSB signal was detected by a dispersion-diversity receiver and then recovered by a deep convolutional neural network (CNN). Nevertheless, the computational complexity of the deep CNN is the main obstacle to the application of the DLEDD scheme. In this paper, we demonstrate a 50-GBaud CV-DSB 32-ary quadrature amplitude modulation (32-QAM) signal transmission over 80-km single-mode fiber with ∼64% computational-budget reduction in the field reconstruction. This is achieved by using 1×1 convolutions to attain a sparse dimensionality (in particular the number of channels) of the deep CNN. To the best of our knowledge, we achieve the highest electrical spectral efficiency of 7.07 b/s/Hz per polarization per wavelength for a CV-DSB DD receiver without requiring a sharp-roll-off optical filter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
linkman发布了新的文献求助10
11秒前
12秒前
jjj完成签到,获得积分10
30秒前
yiyixt完成签到 ,获得积分10
44秒前
方白秋完成签到,获得积分0
53秒前
原子超人完成签到,获得积分10
1分钟前
hehe完成签到,获得积分10
1分钟前
Jasper应助joysa采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
HZ发布了新的文献求助10
2分钟前
2分钟前
叶千山完成签到 ,获得积分10
2分钟前
joysa发布了新的文献求助10
2分钟前
HZ完成签到,获得积分20
2分钟前
量子星尘发布了新的文献求助10
3分钟前
Criminology34应助阿泽采纳,获得10
4分钟前
QQWRV发布了新的文献求助30
4分钟前
ZaZa完成签到,获得积分10
4分钟前
4分钟前
pengpengyin发布了新的文献求助10
4分钟前
田様应助pengpengyin采纳,获得10
4分钟前
alanbike完成签到,获得积分10
5分钟前
miaomiao123完成签到 ,获得积分10
5分钟前
青树柠檬完成签到 ,获得积分10
5分钟前
房天川完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
herococa完成签到,获得积分0
6分钟前
Yorshka完成签到,获得积分10
6分钟前
科研通AI6应助Yorshka采纳,获得30
7分钟前
汉堡包应助Developing_human采纳,获得10
7分钟前
Akim应助火星上的幻梦采纳,获得10
7分钟前
12305014077完成签到 ,获得积分10
8分钟前
大医仁心完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644889
求助须知:如何正确求助?哪些是违规求助? 4766363
关于积分的说明 15025903
捐赠科研通 4803275
什么是DOI,文献DOI怎么找? 2568137
邀请新用户注册赠送积分活动 1525607
关于科研通互助平台的介绍 1485151