阳极
材料科学
阴极
电容
石墨烯
超级电容器
功率密度
化学工程
电流密度
氧化物
储能
准固态
电容器
纳米技术
电极
化学
电压
电解质
电气工程
物理化学
冶金
功率(物理)
物理
量子力学
色素敏化染料
工程类
作者
Jin Chen,Ming Sun,Yifan Zhang,Wenqiang Wang,Gengchao Wang
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2023-04-05
卷期号:6 (8): 4179-4190
被引量:1
标识
DOI:10.1021/acsaem.2c03999
摘要
Sodium-ion capacitors (SICs) bear the advantages of secondary batteries and supercapacitors and are regarded as promising energy-storage devices. However, the matching of the respective Na+-transfer kinetics of the anode and the cathode and the low energy density are still a challenge. Herein, to achieve a high-capacity cathode, 2D V2C MXene nanosheets were introduced into γ-ray-reduced graphene oxide (γ-rGO), and the γ-rGO/V2C MXene foam (GMF) was fabricated. The GMF provides a high specific capacitance of 391.4 mF cm–2 (130.5 F g–1) at a high current density of 60 mA cm–2 (20 A g–1). Meanwhile, the structure-directing strategy combining multiple nanocarbon composites accelerates the Na+-transfer kinetics of sodium titanate (NTO). The as-fabricated CNT film-supported sodium titanate nanowires encapsulated by the graphene (CNTF@NTO-G) anode deliver a specific capacity of 109 mA h g–1 at a high current density of 10 A g–1. As a result, the assembled quasi-solid-state SIC displays an energy density of 5.61 mW h cm–3 (56.1 W h kg–1) at a power density of 1 W cm–3 (10 kW kg–1) with excellent cycle stability (87.3% capacitance retention after 10,000 cycles).
科研通智能强力驱动
Strongly Powered by AbleSci AI