Prospective assessment of pancreatic ductal adenocarcinoma diagnosis from endoscopic ultrasonography images with the assistance of deep learning

医学 前瞻性队列研究 队列 胰腺导管腺癌 内镜超声检查 接收机工作特性 置信区间 放射科 胰腺癌 内科学 内窥镜检查 癌症
作者
Jionghui Gu,Jinhua Pan,Jiayu Hu,Lulu Dai,Ke Zhang,Baohua Wang,Mengna He,Qiyu Zhao,Tianan Jiang
出处
期刊:Cancer [Wiley]
卷期号:129 (14): 2214-2223 被引量:12
标识
DOI:10.1002/cncr.34772
摘要

Endosonographers are highly dependent on the diagnosis of pancreatic ductal adenocarcinoma (PDAC). The objectives of this study were to develop a deep-learning radiomics (DLR) model based on endoscopic ultrasonography (EUS) images for identifying PDAC and to explore its true clinical benefit.A retrospective data set of EUS images that included PDAC and benign lesions was used as a training cohort (N = 368 patients) to develop the DLR model, and a prospective data set was used as a test cohort (N = 123 patients) to validate the effectiveness of the DLR model. In addition, seven endosonographers performed two rounds of reader studies on the test cohort with or without DLR assistance to further assess the clinical applicability and true benefits of the DLR model.In the prospective test cohort, DLR exhibited an area under the receiver operating characteristic curves of 0.936 (95% confidence interval [CI], 0.889-0.976) with a sensitivity of 0.831 (95% CI, 0.746-0.913) and 0.904 (95% CI, 0.820-0.980), respectively. With DLR assistance, the overall diagnostic performance of the seven endosonographers improved: one endosonographer achieved a significant expansion of specificity (p = .035,) and another achieved a significant increase in sensitivity (p = .038). In the junior endosonographer group, the diagnostic performance with the help of the DLR was higher than or comparable to that of the senior endosonographer group without DLR assistance.A prospective test cohort validated that the DLR model based on EUS images effectively identified PDAC. With the assistance of this model, the gap between endosonographers at different levels of experience narrowed, and the accuracy of endosonographers expanded.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jerry发布了新的文献求助10
刚刚
xiaoyangke发布了新的文献求助10
刚刚
LuX完成签到,获得积分10
1秒前
Chunlan完成签到,获得积分10
1秒前
科研通AI2S应助欢喜雪瑶采纳,获得10
2秒前
2秒前
ding应助高兴的世倌采纳,获得10
3秒前
Seven完成签到,获得积分20
3秒前
lebron发布了新的文献求助10
4秒前
ajiwjn完成签到,获得积分10
4秒前
Wangnono发布了新的文献求助10
4秒前
孤独尔安完成签到 ,获得积分10
5秒前
健康的火完成签到,获得积分20
5秒前
奶昔发布了新的文献求助10
5秒前
Conan_CD发布了新的文献求助10
5秒前
ZXDDDD完成签到,获得积分10
6秒前
6秒前
7秒前
盛夏蔚来完成签到 ,获得积分10
7秒前
chen完成签到,获得积分10
7秒前
Orange应助舒适的老虎采纳,获得10
7秒前
香蕉觅云应助承乐采纳,获得10
8秒前
123完成签到 ,获得积分10
8秒前
春秋完成签到,获得积分10
9秒前
AR完成签到,获得积分10
9秒前
9秒前
chan完成签到,获得积分10
9秒前
9秒前
10秒前
上官若男应助材料人采纳,获得10
10秒前
sss完成签到,获得积分10
10秒前
11秒前
wanci应助lebron采纳,获得10
11秒前
11秒前
如约而至完成签到,获得积分20
11秒前
225455完成签到,获得积分10
12秒前
12秒前
zoujianqiao发布了新的文献求助30
12秒前
负责的乐巧完成签到,获得积分10
12秒前
Jerry完成签到,获得积分10
12秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725848
求助须知:如何正确求助?哪些是违规求助? 3270880
关于积分的说明 9969512
捐赠科研通 2986307
什么是DOI,文献DOI怎么找? 1638161
邀请新用户注册赠送积分活动 777987
科研通“疑难数据库(出版商)”最低求助积分说明 747365