Jishun Ma,Weikai Lu,Changèn Zhou,Shenghua Teng,Zuoyong Li
标识
DOI:10.1109/itme56794.2022.00072
摘要
Syndrome classification is an important step in Traditional Chinese Medicine (TCM) for diagnosis and treatment. In this paper, we propose a multi-graph attention network (MGAT) based method to simulate TCM doctors to infer the syndromes. Specifically, the complex relationships between symptoms and state elements are aggregated using graph attention networks (GAT) and syndromes are classified by a multilayer perceptron (MLP). To verify the effectiveness of the model, extensive experiments are conducted on the Treatise on Febrile Diseases dataset. The experimental results show that the proposed method outperforms several typical methods in terms of accuracy, precision, recall, and F1-score. The MGAT model has high accuracy in syndrome classification and has practical application value.