亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Molecular dynamics simulation of CO2-oil miscible fluid distribution and flow within nanopores

癸烷 纳米孔 材料科学 吸附 打滑(空气动力学) 磁导率 化学工程 分子动力学 粘度 化学物理 热力学 化学 纳米技术 复合材料 有机化学 计算化学 工程类 物理 生物化学
作者
Lei Yuan,Yi Zhang,Shezhan Liu,Jingru Zhang,Yongchen Song
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:380: 121769-121769 被引量:11
标识
DOI:10.1016/j.molliq.2023.121769
摘要

CO2 Huff-n-Puff is a promising technology for recovering unconventional oil reservoirs nowadays. Studying the structural properties of CO2-oil inside nanoscale pores and the transport mechanism during production can help further improve crude oil recovery. In this work, molecular dynamics simulations are performed to explore the distribution and flow of CO2-decane within a 6 nm SiO2 nanopore under reservoir conditions. CO2 will substitute the decane adsorbed on the surface under the strong electrostatic interactions with the SiO2 surface. The variation of CO2 content in the adsorbed layer was quantitatively described. The flow behavior of CO2-decane on the pore surface does not obey the continuous hydrodynamics theory. The adsorbed CO2 forms an adhesion layer on the pore surface, shifting the flow boundary condition from slip to negative slip. The CO2-decane permeability model is established to investigate the influences of the negative slip on the permeability. The adhesion layer reduces the permeability of CO2-decane in pores. By contrast, the dissolved CO2 reduces the bulk phase viscosity and raises the decane mobility. The flux analysis results indicate that viscosity reduction contributes more than the flux loss due to negative slip, and CO2 improves the decane transport ability within the nanopore. Besides, sensitive factors such as oil content, pore pressure, and pressure gradient are considered. This study provides new insights into the surface flow behavior of CO2-oil in nanopores, which is essential for the accurate prediction of CO2-oil transport behavior under confined conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡泡甜筒完成签到,获得积分10
2秒前
CipherSage应助檀江采纳,获得10
2秒前
2秒前
白家瑜发布了新的文献求助10
4秒前
科研通AI2S应助George采纳,获得10
6秒前
我是老大应助江经纬采纳,获得10
11秒前
13秒前
Borw完成签到 ,获得积分10
13秒前
全球完成签到,获得积分10
16秒前
16秒前
21秒前
24秒前
27秒前
29秒前
默默完成签到,获得积分10
29秒前
29秒前
31秒前
江经纬发布了新的文献求助10
32秒前
默默发布了新的文献求助10
32秒前
34秒前
檀江发布了新的文献求助10
35秒前
bigalexwei完成签到,获得积分20
36秒前
wangll发布了新的文献求助10
36秒前
37秒前
善学以致用应助AWY采纳,获得10
37秒前
37秒前
量子星尘发布了新的文献求助10
40秒前
41秒前
共享精神应助ceeray23采纳,获得20
43秒前
Kraghc发布了新的文献求助10
43秒前
檀江完成签到,获得积分10
43秒前
44秒前
白家瑜发布了新的文献求助10
45秒前
mm完成签到 ,获得积分10
45秒前
镜小小静发布了新的文献求助10
47秒前
Kraghc完成签到,获得积分10
53秒前
和谐蛋蛋完成签到 ,获得积分10
54秒前
latadawang完成签到,获得积分10
56秒前
58秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664066
求助须知:如何正确求助?哪些是违规求助? 4857165
关于积分的说明 15107066
捐赠科研通 4822504
什么是DOI,文献DOI怎么找? 2581501
邀请新用户注册赠送积分活动 1535723
关于科研通互助平台的介绍 1493949