Nomograms predicting all-cause death and cancer-specific death in patients with bilateral primary breast cancer: a study based on Surveillance, Epidemiology, and End Results

列线图 医学 置信区间 乳腺癌 癌症 比例危险模型 内科学 接收机工作特性 流行病学 死因 肿瘤科 曲线下面积 疾病
作者
Mingyuan He,Yue Hou,Liqun Zou,Ran Li
出处
期刊:Biotechnology & Genetic Engineering Reviews [Informa]
卷期号:40 (2): 1136-1154
标识
DOI:10.1080/02648725.2023.2193036
摘要

Bilateral primary breast cancer (BPBC) patients have a worse prognosis. Tools for accurately predicting mortality risk in patients with BPBC are lacking in clinical practice. We aimed to develop a clinically useful prediction model for the death of BPBC patients. A total of 19,245 BPBC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 were randomly divided into the training set (n = 13,471) and test set (5,774). Models for predicting the 1-, 3- and 5-year death risk of BPBC patients were developed. Multivariate Cox regression analysis was used to develop the all-cause death prediction model, and competitive risk analysis was used to establish the cancer-specific death prediction model. The performance of the model was assessed by calculating the area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI), sensitivity, specificity and accuracy. Age, married status, interval time and first and second tumor's status were associated with both all-cause death and cancer-specific death (all P < 0.05). The AUC of Cox regression models predicted 1-, 3- and 5-year all-cause death was 0.854 (95% CI, 0.835–0.874), 0.838 (95% CI, 0.823–0.852) and 0.799 (95% CI, 0.785–0.812), respectively. The AUC of competitive risk models to predict 1-, 3- and 5-year cancer-specific death was 0.878 (95% CI, 0.859–0.897), 0.866 (95% CI, 0.852–0.879) and 0.854 (95% CI, 0.841–0.867), respectively. Nomograms were developed to predict all-cause death and cancer-specific death in BPBC patients, which may provide tools for clinicians to predict the death risk of BPBC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
根号3发布了新的文献求助10
1秒前
坚强的芙发布了新的文献求助10
1秒前
李爱国应助现代rong采纳,获得10
2秒前
缥莲发布了新的文献求助10
3秒前
英俊的铭应助4149采纳,获得10
3秒前
4秒前
老八的嘴完成签到,获得积分10
4秒前
5秒前
孤独千愁发布了新的文献求助10
5秒前
5秒前
6秒前
pluto应助张艺跃采纳,获得10
6秒前
7秒前
潇洒的博完成签到,获得积分10
7秒前
8秒前
9秒前
科研通AI2S应助缥莲采纳,获得10
9秒前
9秒前
Dinglin完成签到,获得积分10
9秒前
丛士乔完成签到 ,获得积分10
9秒前
10秒前
怒发十篇高分sci完成签到,获得积分20
10秒前
乔乔完成签到,获得积分10
11秒前
11秒前
杨昌琪发布了新的文献求助10
11秒前
Tom发布了新的文献求助10
11秒前
灵灵妖发布了新的文献求助10
11秒前
11秒前
情怀应助火星上的大炮采纳,获得10
12秒前
w_完成签到,获得积分10
12秒前
12秒前
majiayang完成签到,获得积分10
12秒前
颖w完成签到,获得积分10
13秒前
光亮的青寒完成签到,获得积分10
13秒前
情怀应助MC采纳,获得10
13秒前
蓝天发布了新的文献求助10
14秒前
14秒前
依依发布了新的文献求助10
14秒前
spencer177完成签到,获得积分10
14秒前
qianhuxinyu完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836