已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Nomograms predicting all-cause death and cancer-specific death in patients with bilateral primary breast cancer: a study based on Surveillance, Epidemiology, and End Results

列线图 医学 置信区间 乳腺癌 癌症 比例危险模型 内科学 接收机工作特性 流行病学 死因 肿瘤科 曲线下面积 疾病
作者
Mingyuan He,Yue Hou,Liqun Zou,Ran Li
出处
期刊:Biotechnology & Genetic Engineering Reviews [Informa]
卷期号:40 (2): 1136-1154
标识
DOI:10.1080/02648725.2023.2193036
摘要

Bilateral primary breast cancer (BPBC) patients have a worse prognosis. Tools for accurately predicting mortality risk in patients with BPBC are lacking in clinical practice. We aimed to develop a clinically useful prediction model for the death of BPBC patients. A total of 19,245 BPBC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 were randomly divided into the training set (n = 13,471) and test set (5,774). Models for predicting the 1-, 3- and 5-year death risk of BPBC patients were developed. Multivariate Cox regression analysis was used to develop the all-cause death prediction model, and competitive risk analysis was used to establish the cancer-specific death prediction model. The performance of the model was assessed by calculating the area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI), sensitivity, specificity and accuracy. Age, married status, interval time and first and second tumor's status were associated with both all-cause death and cancer-specific death (all P < 0.05). The AUC of Cox regression models predicted 1-, 3- and 5-year all-cause death was 0.854 (95% CI, 0.835–0.874), 0.838 (95% CI, 0.823–0.852) and 0.799 (95% CI, 0.785–0.812), respectively. The AUC of competitive risk models to predict 1-, 3- and 5-year cancer-specific death was 0.878 (95% CI, 0.859–0.897), 0.866 (95% CI, 0.852–0.879) and 0.854 (95% CI, 0.841–0.867), respectively. Nomograms were developed to predict all-cause death and cancer-specific death in BPBC patients, which may provide tools for clinicians to predict the death risk of BPBC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好完成签到 ,获得积分0
2秒前
YMW发布了新的文献求助10
2秒前
TBI发布了新的文献求助10
2秒前
marcg4给youlinn的求助进行了留言
8秒前
in完成签到,获得积分10
14秒前
电量过低完成签到 ,获得积分10
22秒前
23秒前
靓丽奇迹完成签到 ,获得积分10
24秒前
26秒前
una完成签到,获得积分10
26秒前
无花果应助311采纳,获得10
26秒前
34秒前
哈哈完成签到 ,获得积分10
34秒前
34秒前
医者学也完成签到,获得积分10
34秒前
王明慧发布了新的文献求助10
37秒前
luohao完成签到,获得积分10
37秒前
38秒前
311发布了新的文献求助10
39秒前
幽默的盼秋完成签到,获得积分10
40秒前
41秒前
ningwu发布了新的文献求助10
41秒前
43秒前
今后应助哈哈采纳,获得10
46秒前
46秒前
领导范儿应助认真的元枫采纳,获得10
46秒前
喷火龙完成签到,获得积分10
47秒前
zlf关闭了zlf文献求助
47秒前
善学以致用应助逢写必中采纳,获得10
49秒前
制冷剂完成签到 ,获得积分10
49秒前
ningwu完成签到,获得积分10
50秒前
55秒前
璨澄完成签到 ,获得积分10
55秒前
mm完成签到 ,获得积分10
56秒前
哈哈发布了新的文献求助10
59秒前
今后应助材料生采纳,获得10
1分钟前
1分钟前
1分钟前
情怀应助活力的晓夏采纳,获得10
1分钟前
无花果应助火星上的书竹采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482161
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388530
捐赠科研通 4512021
什么是DOI,文献DOI怎么找? 2472671
邀请新用户注册赠送积分活动 1458941
关于科研通互助平台的介绍 1432309