Nomograms predicting all-cause death and cancer-specific death in patients with bilateral primary breast cancer: a study based on Surveillance, Epidemiology, and End Results

列线图 医学 置信区间 乳腺癌 癌症 比例危险模型 内科学 接收机工作特性 流行病学 死因 肿瘤科 曲线下面积 疾病
作者
Mingyuan He,Yue Hou,Liqun Zou,Ran Li
出处
期刊:Biotechnology & Genetic Engineering Reviews [Informa]
卷期号:40 (2): 1136-1154
标识
DOI:10.1080/02648725.2023.2193036
摘要

Bilateral primary breast cancer (BPBC) patients have a worse prognosis. Tools for accurately predicting mortality risk in patients with BPBC are lacking in clinical practice. We aimed to develop a clinically useful prediction model for the death of BPBC patients. A total of 19,245 BPBC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 were randomly divided into the training set (n = 13,471) and test set (5,774). Models for predicting the 1-, 3- and 5-year death risk of BPBC patients were developed. Multivariate Cox regression analysis was used to develop the all-cause death prediction model, and competitive risk analysis was used to establish the cancer-specific death prediction model. The performance of the model was assessed by calculating the area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI), sensitivity, specificity and accuracy. Age, married status, interval time and first and second tumor's status were associated with both all-cause death and cancer-specific death (all P < 0.05). The AUC of Cox regression models predicted 1-, 3- and 5-year all-cause death was 0.854 (95% CI, 0.835–0.874), 0.838 (95% CI, 0.823–0.852) and 0.799 (95% CI, 0.785–0.812), respectively. The AUC of competitive risk models to predict 1-, 3- and 5-year cancer-specific death was 0.878 (95% CI, 0.859–0.897), 0.866 (95% CI, 0.852–0.879) and 0.854 (95% CI, 0.841–0.867), respectively. Nomograms were developed to predict all-cause death and cancer-specific death in BPBC patients, which may provide tools for clinicians to predict the death risk of BPBC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助怕黑的凝旋采纳,获得20
1秒前
HZW发布了新的文献求助10
1秒前
2秒前
3秒前
gzj完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助整齐百褶裙采纳,获得10
4秒前
在水一方应助hang采纳,获得10
5秒前
5秒前
5秒前
感谢大哥的帮助完成签到 ,获得积分10
6秒前
6秒前
乐乐应助勤劳火车采纳,获得30
7秒前
8秒前
友好雅柏完成签到,获得积分10
9秒前
9秒前
9秒前
高高诗柳发布了新的文献求助10
9秒前
9秒前
大模型应助大方平蓝采纳,获得10
9秒前
风起人散发布了新的文献求助10
10秒前
10秒前
Ivy完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
13秒前
13秒前
14秒前
森林完成签到 ,获得积分10
14秒前
拧发条Cris完成签到,获得积分10
15秒前
Orange应助谦让的灵阳采纳,获得10
15秒前
16秒前
16秒前
小鱼女侠发布了新的文献求助10
16秒前
原子格致发布了新的文献求助10
16秒前
宝剑葫芦发布了新的文献求助10
16秒前
冷咖啡离开了杯垫完成签到,获得积分10
17秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749224
求助须知:如何正确求助?哪些是违规求助? 5456884
关于积分的说明 15362980
捐赠科研通 4888661
什么是DOI,文献DOI怎么找? 2628626
邀请新用户注册赠送积分活动 1576952
关于科研通互助平台的介绍 1533670