Nomograms predicting all-cause death and cancer-specific death in patients with bilateral primary breast cancer: a study based on Surveillance, Epidemiology, and End Results

列线图 医学 置信区间 乳腺癌 癌症 比例危险模型 内科学 接收机工作特性 流行病学 死因 肿瘤科 曲线下面积 疾病
作者
Mingyuan He,Yue Hou,Liqun Zou,Ran Li
出处
期刊:Biotechnology & Genetic Engineering Reviews [Informa]
卷期号:40 (2): 1136-1154
标识
DOI:10.1080/02648725.2023.2193036
摘要

Bilateral primary breast cancer (BPBC) patients have a worse prognosis. Tools for accurately predicting mortality risk in patients with BPBC are lacking in clinical practice. We aimed to develop a clinically useful prediction model for the death of BPBC patients. A total of 19,245 BPBC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 were randomly divided into the training set (n = 13,471) and test set (5,774). Models for predicting the 1-, 3- and 5-year death risk of BPBC patients were developed. Multivariate Cox regression analysis was used to develop the all-cause death prediction model, and competitive risk analysis was used to establish the cancer-specific death prediction model. The performance of the model was assessed by calculating the area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI), sensitivity, specificity and accuracy. Age, married status, interval time and first and second tumor's status were associated with both all-cause death and cancer-specific death (all P < 0.05). The AUC of Cox regression models predicted 1-, 3- and 5-year all-cause death was 0.854 (95% CI, 0.835–0.874), 0.838 (95% CI, 0.823–0.852) and 0.799 (95% CI, 0.785–0.812), respectively. The AUC of competitive risk models to predict 1-, 3- and 5-year cancer-specific death was 0.878 (95% CI, 0.859–0.897), 0.866 (95% CI, 0.852–0.879) and 0.854 (95% CI, 0.841–0.867), respectively. Nomograms were developed to predict all-cause death and cancer-specific death in BPBC patients, which may provide tools for clinicians to predict the death risk of BPBC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spring完成签到,获得积分20
1秒前
lql完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
327完成签到,获得积分10
4秒前
脑壳疼完成签到,获得积分10
5秒前
5秒前
hhhooo完成签到,获得积分10
5秒前
朴艺晨完成签到 ,获得积分10
5秒前
Vicky发布了新的文献求助10
6秒前
赘婿应助guan采纳,获得30
6秒前
Yv发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
panzhongjie发布了新的文献求助10
7秒前
共享精神应助jason采纳,获得10
8秒前
longlong完成签到,获得积分10
8秒前
9秒前
left_right完成签到,获得积分10
9秒前
10秒前
执着的麦片完成签到,获得积分10
12秒前
12秒前
云不归完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
14秒前
15秒前
junxu发布了新的文献求助10
16秒前
some发布了新的文献求助10
16秒前
18秒前
坚果发布了新的文献求助10
18秒前
风趣冬瓜发布了新的文献求助10
19秒前
羊羊发布了新的文献求助10
19秒前
22秒前
田様应助大力山槐采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
23秒前
花卷应助科研通管家采纳,获得20
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601572
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847258
捐赠科研通 4681425
什么是DOI,文献DOI怎么找? 2539420
邀请新用户注册赠送积分活动 1506336
关于科研通互助平台的介绍 1471297