Nomograms predicting all-cause death and cancer-specific death in patients with bilateral primary breast cancer: a study based on Surveillance, Epidemiology, and End Results

列线图 医学 置信区间 乳腺癌 癌症 比例危险模型 内科学 接收机工作特性 流行病学 死因 肿瘤科 曲线下面积 疾病
作者
Mingyuan He,Yue Hou,Liqun Zou,Ran Li
出处
期刊:Biotechnology & Genetic Engineering Reviews [Informa]
卷期号:40 (2): 1136-1154
标识
DOI:10.1080/02648725.2023.2193036
摘要

Bilateral primary breast cancer (BPBC) patients have a worse prognosis. Tools for accurately predicting mortality risk in patients with BPBC are lacking in clinical practice. We aimed to develop a clinically useful prediction model for the death of BPBC patients. A total of 19,245 BPBC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 were randomly divided into the training set (n = 13,471) and test set (5,774). Models for predicting the 1-, 3- and 5-year death risk of BPBC patients were developed. Multivariate Cox regression analysis was used to develop the all-cause death prediction model, and competitive risk analysis was used to establish the cancer-specific death prediction model. The performance of the model was assessed by calculating the area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI), sensitivity, specificity and accuracy. Age, married status, interval time and first and second tumor's status were associated with both all-cause death and cancer-specific death (all P < 0.05). The AUC of Cox regression models predicted 1-, 3- and 5-year all-cause death was 0.854 (95% CI, 0.835–0.874), 0.838 (95% CI, 0.823–0.852) and 0.799 (95% CI, 0.785–0.812), respectively. The AUC of competitive risk models to predict 1-, 3- and 5-year cancer-specific death was 0.878 (95% CI, 0.859–0.897), 0.866 (95% CI, 0.852–0.879) and 0.854 (95% CI, 0.841–0.867), respectively. Nomograms were developed to predict all-cause death and cancer-specific death in BPBC patients, which may provide tools for clinicians to predict the death risk of BPBC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术狂徒劲别完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
4秒前
zh完成签到,获得积分10
4秒前
5秒前
苏我入鹿完成签到,获得积分10
6秒前
赘婿应助见澈采纳,获得10
7秒前
黄汉良完成签到,获得积分10
11秒前
知了完成签到 ,获得积分10
12秒前
胡楠完成签到,获得积分10
13秒前
淡然的胡萝卜完成签到 ,获得积分10
17秒前
ANT完成签到 ,获得积分10
20秒前
caicai完成签到,获得积分10
20秒前
Sampson完成签到,获得积分10
22秒前
22秒前
w0304hf完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
27秒前
bigpluto完成签到,获得积分0
29秒前
shepherd完成签到 ,获得积分10
29秒前
自然怀梦完成签到,获得积分10
30秒前
花花2024完成签到 ,获得积分10
31秒前
RYAN完成签到 ,获得积分10
33秒前
三千完成签到,获得积分10
35秒前
马麻薯完成签到,获得积分10
36秒前
葛儿完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
38秒前
健壮惋清完成签到 ,获得积分10
44秒前
46秒前
keyanxiaobaishu完成签到 ,获得积分10
46秒前
cxzsci发布了新的文献求助10
50秒前
认真丹亦完成签到 ,获得积分0
50秒前
凡事发生必有利于我完成签到,获得积分10
51秒前
51秒前
务实时光完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
54秒前
MIST完成签到,获得积分10
1分钟前
郑大钱完成签到,获得积分10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
TYT应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677086
求助须知:如何正确求助?哪些是违规求助? 4970454
关于积分的说明 15159354
捐赠科研通 4836760
什么是DOI,文献DOI怎么找? 2591317
邀请新用户注册赠送积分活动 1544792
关于科研通互助平台的介绍 1502815