已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Nomograms predicting all-cause death and cancer-specific death in patients with bilateral primary breast cancer: a study based on Surveillance, Epidemiology, and End Results

列线图 医学 置信区间 乳腺癌 癌症 比例危险模型 内科学 接收机工作特性 流行病学 死因 肿瘤科 曲线下面积 疾病
作者
Mingyuan He,Yue Hou,Liqun Zou,Ran Li
出处
期刊:Biotechnology & Genetic Engineering Reviews [Informa]
卷期号:40 (2): 1136-1154
标识
DOI:10.1080/02648725.2023.2193036
摘要

Bilateral primary breast cancer (BPBC) patients have a worse prognosis. Tools for accurately predicting mortality risk in patients with BPBC are lacking in clinical practice. We aimed to develop a clinically useful prediction model for the death of BPBC patients. A total of 19,245 BPBC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 were randomly divided into the training set (n = 13,471) and test set (5,774). Models for predicting the 1-, 3- and 5-year death risk of BPBC patients were developed. Multivariate Cox regression analysis was used to develop the all-cause death prediction model, and competitive risk analysis was used to establish the cancer-specific death prediction model. The performance of the model was assessed by calculating the area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI), sensitivity, specificity and accuracy. Age, married status, interval time and first and second tumor's status were associated with both all-cause death and cancer-specific death (all P < 0.05). The AUC of Cox regression models predicted 1-, 3- and 5-year all-cause death was 0.854 (95% CI, 0.835–0.874), 0.838 (95% CI, 0.823–0.852) and 0.799 (95% CI, 0.785–0.812), respectively. The AUC of competitive risk models to predict 1-, 3- and 5-year cancer-specific death was 0.878 (95% CI, 0.859–0.897), 0.866 (95% CI, 0.852–0.879) and 0.854 (95% CI, 0.841–0.867), respectively. Nomograms were developed to predict all-cause death and cancer-specific death in BPBC patients, which may provide tools for clinicians to predict the death risk of BPBC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
6秒前
开心清炎完成签到 ,获得积分10
6秒前
洁净的士晋完成签到,获得积分10
8秒前
zl发布了新的文献求助10
11秒前
abudu发布了新的文献求助10
12秒前
14秒前
15秒前
15秒前
17秒前
Xieyusen发布了新的文献求助10
18秒前
聪慧可愁完成签到 ,获得积分10
21秒前
HE完成签到,获得积分10
22秒前
Xinlei完成签到 ,获得积分10
22秒前
雨安完成签到 ,获得积分10
23秒前
浮游应助qi88采纳,获得10
23秒前
23秒前
bingyv完成签到 ,获得积分10
24秒前
24秒前
111发布了新的文献求助10
25秒前
25秒前
称心静曼完成签到 ,获得积分20
26秒前
LIUFEIYE8887完成签到 ,获得积分10
28秒前
30秒前
睡不够发布了新的文献求助30
30秒前
瞿琼瑶发布了新的文献求助10
31秒前
鱼刺鱼刺卡应助阳光采纳,获得50
31秒前
慕青应助gzmejiji采纳,获得10
32秒前
abudu完成签到,获得积分10
34秒前
minmi发布了新的文献求助20
34秒前
山海关外发布了新的文献求助20
35秒前
36秒前
自由冬亦完成签到,获得积分10
37秒前
38秒前
39秒前
隐形曼青应助sn采纳,获得30
44秒前
lll发布了新的文献求助10
45秒前
46秒前
爱思考的小笨笨完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426055
求助须知:如何正确求助?哪些是违规求助? 4539751
关于积分的说明 14170500
捐赠科研通 4457568
什么是DOI,文献DOI怎么找? 2444607
邀请新用户注册赠送积分活动 1435561
关于科研通互助平台的介绍 1412983