亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nomograms predicting all-cause death and cancer-specific death in patients with bilateral primary breast cancer: a study based on Surveillance, Epidemiology, and End Results

列线图 医学 置信区间 乳腺癌 癌症 比例危险模型 内科学 接收机工作特性 流行病学 死因 肿瘤科 曲线下面积 疾病
作者
Mingyuan He,Yue Hou,Liqun Zou,Ran Li
出处
期刊:Biotechnology & Genetic Engineering Reviews [Informa]
卷期号:40 (2): 1136-1154
标识
DOI:10.1080/02648725.2023.2193036
摘要

Bilateral primary breast cancer (BPBC) patients have a worse prognosis. Tools for accurately predicting mortality risk in patients with BPBC are lacking in clinical practice. We aimed to develop a clinically useful prediction model for the death of BPBC patients. A total of 19,245 BPBC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 were randomly divided into the training set (n = 13,471) and test set (5,774). Models for predicting the 1-, 3- and 5-year death risk of BPBC patients were developed. Multivariate Cox regression analysis was used to develop the all-cause death prediction model, and competitive risk analysis was used to establish the cancer-specific death prediction model. The performance of the model was assessed by calculating the area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI), sensitivity, specificity and accuracy. Age, married status, interval time and first and second tumor's status were associated with both all-cause death and cancer-specific death (all P < 0.05). The AUC of Cox regression models predicted 1-, 3- and 5-year all-cause death was 0.854 (95% CI, 0.835–0.874), 0.838 (95% CI, 0.823–0.852) and 0.799 (95% CI, 0.785–0.812), respectively. The AUC of competitive risk models to predict 1-, 3- and 5-year cancer-specific death was 0.878 (95% CI, 0.859–0.897), 0.866 (95% CI, 0.852–0.879) and 0.854 (95% CI, 0.841–0.867), respectively. Nomograms were developed to predict all-cause death and cancer-specific death in BPBC patients, which may provide tools for clinicians to predict the death risk of BPBC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呜呜吴完成签到,获得积分10
2秒前
2秒前
Lucas应助mogekkko采纳,获得10
3秒前
6秒前
xyjf15发布了新的文献求助50
9秒前
10秒前
宁不正完成签到 ,获得积分20
11秒前
背后一江发布了新的文献求助10
12秒前
第二支羽毛完成签到,获得积分10
14秒前
赵一谋发布了新的文献求助10
16秒前
16秒前
19秒前
serendipity完成签到 ,获得积分10
19秒前
今后应助mogekkko采纳,获得10
21秒前
斯通纳完成签到 ,获得积分10
25秒前
搜集达人应助李洛华哥采纳,获得10
27秒前
苹果王子6699完成签到 ,获得积分10
28秒前
CipherSage应助宁不正采纳,获得10
31秒前
若宫伊芙应助兜兜采纳,获得10
34秒前
烟花应助mogekkko采纳,获得10
36秒前
37秒前
nazhang发布了新的文献求助10
41秒前
42秒前
赵一谋发布了新的文献求助10
44秒前
46秒前
46秒前
852应助科研通管家采纳,获得10
46秒前
落寞依珊完成签到,获得积分10
46秒前
wzy完成签到,获得积分10
48秒前
mogekkko发布了新的文献求助10
49秒前
青柚完成签到 ,获得积分10
49秒前
田様应助殷楷霖采纳,获得10
51秒前
bkagyin应助wing00024采纳,获得10
54秒前
大个应助跳跃的小之采纳,获得10
57秒前
mogekkko发布了新的文献求助10
1分钟前
天天快乐应助MJH123456采纳,获得10
1分钟前
1分钟前
stresm完成签到,获得积分10
1分钟前
小星星完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644428
求助须知:如何正确求助?哪些是违规求助? 4764178
关于积分的说明 15025100
捐赠科研通 4802856
什么是DOI,文献DOI怎么找? 2567622
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484790