Nomograms predicting all-cause death and cancer-specific death in patients with bilateral primary breast cancer: a study based on Surveillance, Epidemiology, and End Results

列线图 医学 置信区间 乳腺癌 癌症 比例危险模型 内科学 接收机工作特性 流行病学 死因 肿瘤科 曲线下面积 疾病
作者
Mingyuan He,Yue Hou,Liqun Zou,Ran Li
出处
期刊:Biotechnology & Genetic Engineering Reviews [Informa]
卷期号:40 (2): 1136-1154
标识
DOI:10.1080/02648725.2023.2193036
摘要

Bilateral primary breast cancer (BPBC) patients have a worse prognosis. Tools for accurately predicting mortality risk in patients with BPBC are lacking in clinical practice. We aimed to develop a clinically useful prediction model for the death of BPBC patients. A total of 19,245 BPBC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 were randomly divided into the training set (n = 13,471) and test set (5,774). Models for predicting the 1-, 3- and 5-year death risk of BPBC patients were developed. Multivariate Cox regression analysis was used to develop the all-cause death prediction model, and competitive risk analysis was used to establish the cancer-specific death prediction model. The performance of the model was assessed by calculating the area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI), sensitivity, specificity and accuracy. Age, married status, interval time and first and second tumor's status were associated with both all-cause death and cancer-specific death (all P < 0.05). The AUC of Cox regression models predicted 1-, 3- and 5-year all-cause death was 0.854 (95% CI, 0.835–0.874), 0.838 (95% CI, 0.823–0.852) and 0.799 (95% CI, 0.785–0.812), respectively. The AUC of competitive risk models to predict 1-, 3- and 5-year cancer-specific death was 0.878 (95% CI, 0.859–0.897), 0.866 (95% CI, 0.852–0.879) and 0.854 (95% CI, 0.841–0.867), respectively. Nomograms were developed to predict all-cause death and cancer-specific death in BPBC patients, which may provide tools for clinicians to predict the death risk of BPBC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌的寄云完成签到 ,获得积分10
刚刚
Pie发布了新的文献求助10
1秒前
科研通AI6应助大洋葱采纳,获得10
2秒前
科研通AI6应助大洋葱采纳,获得10
2秒前
蓬荜生辉完成签到,获得积分10
6秒前
7秒前
李明月完成签到,获得积分10
7秒前
qq发布了新的文献求助10
8秒前
浮游应助认真的砖头采纳,获得10
8秒前
8秒前
11秒前
HITvagary完成签到,获得积分10
13秒前
寇博翔发布了新的文献求助10
14秒前
简单的沛蓝完成签到,获得积分10
14秒前
15秒前
YUNI完成签到 ,获得积分10
17秒前
17秒前
19秒前
彩色映雁完成签到 ,获得积分10
19秒前
丘比特应助美丽心情采纳,获得10
19秒前
21秒前
spc68应助晨枫采纳,获得10
21秒前
随风完成签到 ,获得积分10
22秒前
22秒前
22秒前
芊芊墨发布了新的文献求助10
26秒前
27秒前
CYYDNDB发布了新的文献求助30
27秒前
俊逸书琴发布了新的文献求助10
28秒前
归诚完成签到,获得积分10
28秒前
29秒前
科研通AI6应助Devin Irving采纳,获得10
30秒前
帅气不惜完成签到,获得积分10
30秒前
32秒前
ding应助深情大凄采纳,获得10
32秒前
wise111发布了新的文献求助10
33秒前
UnydingZEN发布了新的文献求助10
34秒前
猪也吃草完成签到,获得积分10
36秒前
美丽心情发布了新的文献求助10
37秒前
LK5559完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560699
求助须知:如何正确求助?哪些是违规求助? 4646016
关于积分的说明 14676918
捐赠科研通 4587117
什么是DOI,文献DOI怎么找? 2516822
邀请新用户注册赠送积分活动 1490308
关于科研通互助平台的介绍 1461136