Multi-view Ensemble Clustering via Low-rank and Sparse Decomposition: From Matrix to Tensor

聚类分析 秩(图论) 数学 张量(固有定义) 基质(化学分析) 奇异值分解 稀疏矩阵 计算机科学 算法 人工智能 组合数学 计算化学 纯数学 材料科学 复合材料 化学 高斯分布
作者
Xuanqi Zhang,Qiangqiang Shen,Yongyong Chen,Guokai Zhang,Zhongyun Hua,Jingyong Su
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (7): 1-19 被引量:4
标识
DOI:10.1145/3589768
摘要

As a significant extension of classical clustering methods, ensemble clustering first generates multiple basic clusterings and then fuses them into one consensus partition by solving a problem concerning graph partition with respect to the co-association matrix. Although the collaborative cluster structure among basic clusterings can be well discovered by ensemble clustering, most advanced ensemble clustering utilizes the self-representation strategy with the constraint of low-rank to explore a shared consensus representation matrix in multiple views. However, they still encounter two challenges: (1) high computational cost caused by both the matrix inversion operation and singular value decomposition of large-scale square matrices; (2) less considerable attention on high-order correlation attributed to the pursue of the two-dimensional pair-wise relationship matrix. In this article, based on low-rank and sparse decomposition from both matrix and tensor perspectives, we propose two novel multi-view ensemble clustering methods, which tangibly decrease computational complexity. Specifically, our first method utilizes low-rank and sparse matrix decomposition to learn one common co-association matrix, while our last method constructs all co-association matrices into one third-order tensor to investigate the high-order correlation among multiple views by low-rank and sparse tensor decomposition. We adopt the alternating direction method of multipliers to solve two convex models by dividing them into several subproblems with closed-form solution. Experimental results on ten real-world datasets prove the effectiveness and efficiency of the proposed two multi-view ensemble clustering methods by comparing them with other advanced ensemble clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助漂亮的火龙果采纳,获得10
刚刚
123完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
jjjjjjjjj发布了新的文献求助20
2秒前
Jasper应助黄花采纳,获得10
2秒前
Jasper应助lan采纳,获得10
2秒前
小蘑菇应助qian采纳,获得10
3秒前
3秒前
无花果应助问天采纳,获得10
3秒前
123发布了新的文献求助10
4秒前
饼饼完成签到,获得积分10
4秒前
痴情的幻儿完成签到,获得积分10
4秒前
maying0318发布了新的文献求助10
4秒前
cwm完成签到,获得积分10
5秒前
寒冷小兔子完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
Leelelele应助跳跃仙人掌采纳,获得30
6秒前
Zll完成签到 ,获得积分10
7秒前
7秒前
7秒前
star发布了新的文献求助10
8秒前
mashichuang发布了新的文献求助10
8秒前
8秒前
8秒前
大碗完成签到 ,获得积分10
8秒前
愉快问枫发布了新的文献求助30
10秒前
自信又菡完成签到,获得积分10
10秒前
杨震发布了新的文献求助10
12秒前
12秒前
13秒前
无限青雪完成签到,获得积分20
13秒前
Liang发布了新的文献求助10
13秒前
啊啊啊发布了新的文献求助10
13秒前
王一博完成签到,获得积分10
13秒前
情怀应助777采纳,获得10
13秒前
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254632
求助须知:如何正确求助?哪些是违规求助? 2896806
关于积分的说明 8294490
捐赠科研通 2565750
什么是DOI,文献DOI怎么找? 1393327
科研通“疑难数据库(出版商)”最低求助积分说明 652471
邀请新用户注册赠送积分活动 630040