Long-term trajectories of depressive symptoms and machine learning techniques for fall prediction in older adults: Evidence from the China Health and Retirement Longitudinal Study (CHARLS)

纵向研究 萧条(经济学) 老年学 心理学 抑郁症状 医学 精神科 认知 宏观经济学 病理 经济
作者
Xiaodong Chen,Shaowu Lin,Yixuan Zheng,Lingxiao He,Ya Fang
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier]
卷期号:111: 105012-105012 被引量:4
标识
DOI:10.1016/j.archger.2023.105012
摘要

Falls are the most common adverse outcome of depression in older adults, yet a accurate risk prediction model for falls stratified by distinct long-term trajectories of depressive symptoms is still lacking. We collected the data of 1617 participants from the China Health and Retirement Longitudinal Study register, spanning between 2011 and 2018. The 36 input variables included in the baseline survey were regarded as candidate features. The trajectories of depressive symptoms were classified by the latent class growth model and growth mixture model. Three data balancing technologies and four machine learning algorithms were utilized to develop predictive models for fall classification of depressive prognosis. Depressive symptom trajectories were divided into four categories, i.e., non-symptoms, new-onset increasing symptoms, slowly decreasing symptoms, and persistent high symptoms. The random forest-TomekLinks model achieved the best performance among the case and incident models with an AUC-ROC of 0.844 and 0.731, respectively. In the chronic model, the gradient boosting decision tree-synthetic minority oversampling technique obtained an AUC-ROC of 0.783. In the three models, the depressive symptom score was the most crucial component. The lung function was a common and significant feature in both the case and the chronic models. This study suggests that the ideal model has a good chance of identifying older persons with a high risk of falling stratified by long-term trajectories of depressive symptoms. Baseline depressive symptom score, lung function, income, and injury experience are influential factors associated with falls of depression evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钰姝发布了新的文献求助30
1秒前
不配.应助design采纳,获得10
2秒前
季季红发布了新的文献求助10
3秒前
4秒前
属下存在感完成签到,获得积分10
4秒前
5秒前
qwe应助传统的如霜采纳,获得20
6秒前
CCXG完成签到,获得积分20
6秒前
可爱的函函应助Camel采纳,获得10
7秒前
外向语山发布了新的文献求助10
8秒前
风趣的灵枫完成签到 ,获得积分10
8秒前
言不得语发布了新的文献求助10
9秒前
10秒前
传奇3应助科研小lese采纳,获得10
10秒前
英俊的铭应助fwt采纳,获得10
11秒前
自然垣完成签到,获得积分20
11秒前
Someone完成签到,获得积分10
11秒前
钰姝完成签到,获得积分20
11秒前
脑洞疼应助单hx采纳,获得10
11秒前
12秒前
拾柒完成签到,获得积分10
12秒前
单薄的半鬼完成签到,获得积分10
12秒前
麟钰完成签到,获得积分10
13秒前
13秒前
bkagyin应助SYUE采纳,获得10
13秒前
15秒前
yungge完成签到,获得积分10
15秒前
Hello应助xxxx采纳,获得10
15秒前
ll发布了新的文献求助30
15秒前
16秒前
搞怪羊完成签到,获得积分10
16秒前
11发布了新的文献求助10
16秒前
喂喂巍完成签到 ,获得积分10
16秒前
Jasmine发布了新的文献求助10
16秒前
changyee发布了新的文献求助10
17秒前
菜菜Cc发布了新的文献求助10
17秒前
会武功的阿吉完成签到,获得积分10
17秒前
18秒前
18秒前
Ava应助毅诚菌采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143897
求助须知:如何正确求助?哪些是违规求助? 2795508
关于积分的说明 7815487
捐赠科研通 2451567
什么是DOI,文献DOI怎么找? 1304518
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419