亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Long-term trajectories of depressive symptoms and machine learning techniques for fall prediction in older adults: Evidence from the China Health and Retirement Longitudinal Study (CHARLS)

纵向研究 萧条(经济学) 老年学 心理学 抑郁症状 医学 精神科 认知 宏观经济学 病理 经济
作者
Xiaodong Chen,Shaowu Lin,Yixuan Zheng,Lingxiao He,Ya Fang
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier BV]
卷期号:111: 105012-105012 被引量:9
标识
DOI:10.1016/j.archger.2023.105012
摘要

Falls are the most common adverse outcome of depression in older adults, yet a accurate risk prediction model for falls stratified by distinct long-term trajectories of depressive symptoms is still lacking. We collected the data of 1617 participants from the China Health and Retirement Longitudinal Study register, spanning between 2011 and 2018. The 36 input variables included in the baseline survey were regarded as candidate features. The trajectories of depressive symptoms were classified by the latent class growth model and growth mixture model. Three data balancing technologies and four machine learning algorithms were utilized to develop predictive models for fall classification of depressive prognosis. Depressive symptom trajectories were divided into four categories, i.e., non-symptoms, new-onset increasing symptoms, slowly decreasing symptoms, and persistent high symptoms. The random forest-TomekLinks model achieved the best performance among the case and incident models with an AUC-ROC of 0.844 and 0.731, respectively. In the chronic model, the gradient boosting decision tree-synthetic minority oversampling technique obtained an AUC-ROC of 0.783. In the three models, the depressive symptom score was the most crucial component. The lung function was a common and significant feature in both the case and the chronic models. This study suggests that the ideal model has a good chance of identifying older persons with a high risk of falling stratified by long-term trajectories of depressive symptoms. Baseline depressive symptom score, lung function, income, and injury experience are influential factors associated with falls of depression evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛力发布了新的文献求助10
14秒前
17秒前
20秒前
郭志晟完成签到 ,获得积分10
21秒前
YY发布了新的文献求助10
22秒前
能干的人发布了新的文献求助50
25秒前
传奇3应助科研通管家采纳,获得10
27秒前
爆米花应助科研通管家采纳,获得10
27秒前
英姑应助科研通管家采纳,获得10
27秒前
27秒前
羽羽完成签到 ,获得积分10
41秒前
41秒前
flywire发布了新的文献求助200
44秒前
lei发布了新的文献求助10
47秒前
50秒前
Shrine完成签到,获得积分10
56秒前
Friday完成签到,获得积分10
58秒前
开心寄松发布了新的文献求助10
59秒前
xx关闭了xx文献求助
1分钟前
葛力发布了新的文献求助10
1分钟前
两个轮完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
更明发布了新的文献求助10
1分钟前
清爽冬莲完成签到 ,获得积分10
1分钟前
flywire完成签到,获得积分10
2分钟前
葛力发布了新的文献求助10
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
cc应助科研通管家采纳,获得10
2分钟前
汉堡包应助更明采纳,获得10
2分钟前
小狗发布了新的文献求助10
2分钟前
kongkai完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
维维完成签到 ,获得积分10
2分钟前
huangwensou发布了新的文献求助10
2分钟前
深情安青应助Sience采纳,获得10
2分钟前
kongkai发布了新的文献求助200
2分钟前
小狗发布了新的文献求助10
3分钟前
zommen完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128598
捐赠科研通 3238264
什么是DOI,文献DOI怎么找? 1789651
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069