Long-term trajectories of depressive symptoms and machine learning techniques for fall prediction in older adults: Evidence from the China Health and Retirement Longitudinal Study (CHARLS)

纵向研究 萧条(经济学) 老年学 心理学 抑郁症状 医学 精神科 认知 宏观经济学 病理 经济
作者
Xiaodong Chen,Shaowu Lin,Yixuan Zheng,Lingxiao He,Ya Fang
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier BV]
卷期号:111: 105012-105012 被引量:11
标识
DOI:10.1016/j.archger.2023.105012
摘要

Falls are the most common adverse outcome of depression in older adults, yet a accurate risk prediction model for falls stratified by distinct long-term trajectories of depressive symptoms is still lacking. We collected the data of 1617 participants from the China Health and Retirement Longitudinal Study register, spanning between 2011 and 2018. The 36 input variables included in the baseline survey were regarded as candidate features. The trajectories of depressive symptoms were classified by the latent class growth model and growth mixture model. Three data balancing technologies and four machine learning algorithms were utilized to develop predictive models for fall classification of depressive prognosis. Depressive symptom trajectories were divided into four categories, i.e., non-symptoms, new-onset increasing symptoms, slowly decreasing symptoms, and persistent high symptoms. The random forest-TomekLinks model achieved the best performance among the case and incident models with an AUC-ROC of 0.844 and 0.731, respectively. In the chronic model, the gradient boosting decision tree-synthetic minority oversampling technique obtained an AUC-ROC of 0.783. In the three models, the depressive symptom score was the most crucial component. The lung function was a common and significant feature in both the case and the chronic models. This study suggests that the ideal model has a good chance of identifying older persons with a high risk of falling stratified by long-term trajectories of depressive symptoms. Baseline depressive symptom score, lung function, income, and injury experience are influential factors associated with falls of depression evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冰花之狱发布了新的文献求助10
刚刚
xiaojia发布了新的文献求助10
1秒前
逍遥游发布了新的文献求助10
1秒前
vvvvvirus完成签到,获得积分10
1秒前
松鼠15111完成签到,获得积分10
2秒前
JamesPei应助ttsx采纳,获得10
3秒前
叶赛文完成签到,获得积分10
3秒前
科研通AI6应助酷炫的啤酒采纳,获得10
3秒前
密林小叶子完成签到,获得积分10
3秒前
sss三发布了新的文献求助10
4秒前
4秒前
8秒前
爆米花应助wuwu采纳,获得10
9秒前
自然的剑封完成签到,获得积分10
10秒前
温柔从云发布了新的文献求助10
10秒前
11秒前
13秒前
科研通AI5应助冰花之狱采纳,获得10
14秒前
15秒前
杰杰杰杰发布了新的文献求助10
15秒前
清秀的乐儿完成签到,获得积分20
16秒前
ttsx发布了新的文献求助10
17秒前
Yukimio发布了新的文献求助10
17秒前
wq发布了新的文献求助10
18秒前
深深深海完成签到,获得积分10
20秒前
不想干活应助RSC采纳,获得10
20秒前
秋山落叶完成签到,获得积分10
21秒前
AAA下水工王哥完成签到,获得积分10
22秒前
加菲猫688发布了新的文献求助10
22秒前
22秒前
Orange应助Yukimio采纳,获得10
23秒前
Jasper应助hh采纳,获得10
25秒前
zhanglh完成签到 ,获得积分10
25秒前
xmuchem发布了新的文献求助10
28秒前
29秒前
31秒前
杰杰杰杰完成签到,获得积分10
32秒前
666plus完成签到,获得积分10
33秒前
小池同学完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546119
求助须知:如何正确求助?哪些是违规求助? 3977536
关于积分的说明 12316458
捐赠科研通 3645902
什么是DOI,文献DOI怎么找? 2007838
邀请新用户注册赠送积分活动 1043384
科研通“疑难数据库(出版商)”最低求助积分说明 932142