Semi‐supervised graph convolutional networks for the domain adaptive recognition of thyroid nodules in cross‐device ultrasound images

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 甲状腺结节 图形 域适应 深度学习 领域(数学分析) 计算机辅助诊断 计算机视觉 分类器(UML) 甲状腺 医学 数学 数学分析 内科学 理论计算机科学
作者
Kun Zhang,Zhongyu Li,Cai Chang,Jingyi Liu,Dou Xu,Chaowei Fang,Peng Huang,Ying Wang,Meng Yang,Shi Chang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7806-7821 被引量:2
标识
DOI:10.1002/mp.16384
摘要

Ultrasound plays a critical role in the early screening and diagnosis of cancers. Although deep neural networks have been widely investigated in the computer-aided diagnosis (CAD) of different medical images, diverse ultrasound devices, and image modalities pose challenges for clinical applications, especially in the recognition of thyroid nodules having various shapes and sizes. More generalized and extensible methods need to be developed for the cross-devices recognition of thyroid nodules.In this work, a semi-supervised graph convolutional deep learning framework is proposed for the domain adaptative recognition of thyroid nodules across several ultrasound devices. A deep classification network, trained on a source domain with a specific device, can be transferred to recognize thyroid nodules on the target domain with other devices, using only few manual annotated ultrasound images.This study presents a semi-supervised graph-convolutional-network-based domain adaptation framework, namely Semi-GCNs-DA. Based on the ResNet backbone, it is extended in three aspects for domain adaptation, that is, graph convolutional networks (GCNs) for the connection construction between source and target domains, semi-supervised GCNs for accurate target domain recognition, and pseudo labels for unlabeled target domains. Data were collected from 1498 patients comprising 12 108 images with or without thyroid nodules under three different ultrasound devices. Accuracy, Sensitivity and Specificity were used for the performance evaluation.The proposed method was validated on six groups of data for a single source domain adaptation task, the mean Accuracy was 0.9719 ± 0.0023, 0.9928 ± 0.0022, 0.9353 ± 0.0105, 0.8727 ± 0.0021, 0.7596 ± 0.0045, 0.8482 ± 0.0092, which achieved better performance in comparison with the state-of-the-art. The proposed method was also validated on three groups of multiple source domain adaptation tasks. In particular, when using X60 and HS50 as the source domain data, and H60 as the target domain, it can achieve the Accuracy of 0.8829 ± 0.0079, Sensitivity of 0.9757 ± 0.0001, and Specificity of 0.7894 ± 0.0164. Ablation experiments also demonstrated the effectiveness of the proposed modules.The developed Semi-GCNs-DA framework can effectively recognize thyroid nodules on different ultrasound devices. The developed semi-supervised GCNs can be further extended to the domain adaptation problems for other modalities of medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜美鬼神发布了新的文献求助10
刚刚
55完成签到,获得积分10
刚刚
wanci应助XHH1994采纳,获得10
1秒前
英姑应助动听的店员采纳,获得10
2秒前
CCCZH发布了新的文献求助10
2秒前
3秒前
4秒前
起朱楼完成签到,获得积分10
4秒前
自信璎发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
hyominhsu完成签到,获得积分10
5秒前
852应助笑点低的碧琴采纳,获得10
5秒前
6秒前
嘿哈发布了新的文献求助10
6秒前
可爱的函函应助zhangsiyao采纳,获得10
7秒前
7秒前
7秒前
木木发布了新的文献求助10
8秒前
DVDDVD不反对完成签到,获得积分10
8秒前
111完成签到,获得积分10
9秒前
栀暖棠深发布了新的文献求助10
9秒前
科研通AI5应助贾翔采纳,获得10
9秒前
10秒前
科研通AI5应助徐昊雯采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
Highsea完成签到,获得积分10
11秒前
夏侯幻梦完成签到 ,获得积分10
11秒前
11秒前
11秒前
zzz完成签到 ,获得积分10
12秒前
赘婿应助YJ888采纳,获得10
12秒前
yyyhhh发布了新的文献求助10
13秒前
活泼又晴发布了新的文献求助10
13秒前
太阳当空照完成签到,获得积分10
13秒前
王怡发布了新的文献求助10
13秒前
14秒前
Jasper应助猹尔斯采纳,获得10
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709