Semi‐supervised graph convolutional networks for the domain adaptive recognition of thyroid nodules in cross‐device ultrasound images

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 甲状腺结节 图形 域适应 深度学习 领域(数学分析) 计算机辅助诊断 计算机视觉 分类器(UML) 甲状腺 医学 数学 数学分析 理论计算机科学 内科学
作者
Kun Zhang,Zhongyu Li,Cai Chang,Jingyi Liu,Dou Xu,Chaowei Fang,Peng Huang,Ying Wang,Meng Yang,Shi Chang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7806-7821 被引量:2
标识
DOI:10.1002/mp.16384
摘要

Ultrasound plays a critical role in the early screening and diagnosis of cancers. Although deep neural networks have been widely investigated in the computer-aided diagnosis (CAD) of different medical images, diverse ultrasound devices, and image modalities pose challenges for clinical applications, especially in the recognition of thyroid nodules having various shapes and sizes. More generalized and extensible methods need to be developed for the cross-devices recognition of thyroid nodules.In this work, a semi-supervised graph convolutional deep learning framework is proposed for the domain adaptative recognition of thyroid nodules across several ultrasound devices. A deep classification network, trained on a source domain with a specific device, can be transferred to recognize thyroid nodules on the target domain with other devices, using only few manual annotated ultrasound images.This study presents a semi-supervised graph-convolutional-network-based domain adaptation framework, namely Semi-GCNs-DA. Based on the ResNet backbone, it is extended in three aspects for domain adaptation, that is, graph convolutional networks (GCNs) for the connection construction between source and target domains, semi-supervised GCNs for accurate target domain recognition, and pseudo labels for unlabeled target domains. Data were collected from 1498 patients comprising 12 108 images with or without thyroid nodules under three different ultrasound devices. Accuracy, Sensitivity and Specificity were used for the performance evaluation.The proposed method was validated on six groups of data for a single source domain adaptation task, the mean Accuracy was 0.9719 ± 0.0023, 0.9928 ± 0.0022, 0.9353 ± 0.0105, 0.8727 ± 0.0021, 0.7596 ± 0.0045, 0.8482 ± 0.0092, which achieved better performance in comparison with the state-of-the-art. The proposed method was also validated on three groups of multiple source domain adaptation tasks. In particular, when using X60 and HS50 as the source domain data, and H60 as the target domain, it can achieve the Accuracy of 0.8829 ± 0.0079, Sensitivity of 0.9757 ± 0.0001, and Specificity of 0.7894 ± 0.0164. Ablation experiments also demonstrated the effectiveness of the proposed modules.The developed Semi-GCNs-DA framework can effectively recognize thyroid nodules on different ultrasound devices. The developed semi-supervised GCNs can be further extended to the domain adaptation problems for other modalities of medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆的忆寒完成签到,获得积分10
2秒前
韭菜发布了新的文献求助10
5秒前
楚襄谷完成签到 ,获得积分10
6秒前
魔幻安南完成签到 ,获得积分10
9秒前
超级的妙晴完成签到 ,获得积分10
12秒前
充电宝应助韭菜采纳,获得10
12秒前
大模型应助韭菜采纳,获得10
12秒前
hookie完成签到 ,获得积分10
13秒前
13秒前
佳期如梦完成签到 ,获得积分10
15秒前
yzshiny完成签到 ,获得积分0
16秒前
寂寞圣贤完成签到,获得积分10
18秒前
Brian发布了新的文献求助10
20秒前
小木子完成签到,获得积分10
21秒前
琦qi完成签到 ,获得积分10
23秒前
24秒前
阡陌完成签到,获得积分10
25秒前
小木子发布了新的文献求助10
27秒前
可爱的紫菜完成签到 ,获得积分10
31秒前
冷傲的迎南完成签到 ,获得积分10
31秒前
成硕完成签到,获得积分10
32秒前
34秒前
GU发布了新的文献求助20
34秒前
修水县1个科研人完成签到 ,获得积分10
36秒前
yuminger完成签到 ,获得积分10
37秒前
传奇3应助GU采纳,获得20
45秒前
Josie完成签到 ,获得积分10
51秒前
飘逸宛丝完成签到,获得积分10
52秒前
lixia完成签到 ,获得积分10
57秒前
JJ完成签到 ,获得积分10
57秒前
Brian完成签到,获得积分20
1分钟前
HCCha完成签到,获得积分10
1分钟前
mmmmmmgm完成签到 ,获得积分10
1分钟前
xingyi完成签到,获得积分10
1分钟前
Singularity完成签到,获得积分0
1分钟前
S飞完成签到 ,获得积分10
1分钟前
韭菜完成签到,获得积分20
1分钟前
奶油小饼干完成签到 ,获得积分10
1分钟前
李凤凤完成签到 ,获得积分10
1分钟前
小高同学完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162398
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899832
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142