已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semi‐supervised graph convolutional networks for the domain adaptive recognition of thyroid nodules in cross‐device ultrasound images

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 甲状腺结节 图形 域适应 深度学习 领域(数学分析) 计算机辅助诊断 计算机视觉 分类器(UML) 甲状腺 医学 数学 数学分析 内科学 理论计算机科学
作者
Kun Zhang,Zhongyu Li,Cai Chang,Jingyi Liu,Dou Xu,Chaowei Fang,Peng Huang,Ying Wang,Meng Yang,Shi Chang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7806-7821 被引量:2
标识
DOI:10.1002/mp.16384
摘要

Ultrasound plays a critical role in the early screening and diagnosis of cancers. Although deep neural networks have been widely investigated in the computer-aided diagnosis (CAD) of different medical images, diverse ultrasound devices, and image modalities pose challenges for clinical applications, especially in the recognition of thyroid nodules having various shapes and sizes. More generalized and extensible methods need to be developed for the cross-devices recognition of thyroid nodules.In this work, a semi-supervised graph convolutional deep learning framework is proposed for the domain adaptative recognition of thyroid nodules across several ultrasound devices. A deep classification network, trained on a source domain with a specific device, can be transferred to recognize thyroid nodules on the target domain with other devices, using only few manual annotated ultrasound images.This study presents a semi-supervised graph-convolutional-network-based domain adaptation framework, namely Semi-GCNs-DA. Based on the ResNet backbone, it is extended in three aspects for domain adaptation, that is, graph convolutional networks (GCNs) for the connection construction between source and target domains, semi-supervised GCNs for accurate target domain recognition, and pseudo labels for unlabeled target domains. Data were collected from 1498 patients comprising 12 108 images with or without thyroid nodules under three different ultrasound devices. Accuracy, Sensitivity and Specificity were used for the performance evaluation.The proposed method was validated on six groups of data for a single source domain adaptation task, the mean Accuracy was 0.9719 ± 0.0023, 0.9928 ± 0.0022, 0.9353 ± 0.0105, 0.8727 ± 0.0021, 0.7596 ± 0.0045, 0.8482 ± 0.0092, which achieved better performance in comparison with the state-of-the-art. The proposed method was also validated on three groups of multiple source domain adaptation tasks. In particular, when using X60 and HS50 as the source domain data, and H60 as the target domain, it can achieve the Accuracy of 0.8829 ± 0.0079, Sensitivity of 0.9757 ± 0.0001, and Specificity of 0.7894 ± 0.0164. Ablation experiments also demonstrated the effectiveness of the proposed modules.The developed Semi-GCNs-DA framework can effectively recognize thyroid nodules on different ultrasound devices. The developed semi-supervised GCNs can be further extended to the domain adaptation problems for other modalities of medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Lucas应助tgg采纳,获得10
2秒前
2秒前
Ayao发布了新的文献求助20
3秒前
5秒前
Takahara2000应助诚心如意采纳,获得10
6秒前
小人物的坚持完成签到 ,获得积分10
7秒前
8秒前
wik发布了新的文献求助10
8秒前
wangxiaoqing完成签到,获得积分10
9秒前
科研通AI6应助宇心采纳,获得10
10秒前
11秒前
可闲发布了新的文献求助10
13秒前
wangxiaoqing发布了新的文献求助10
14秒前
Zcl发布了新的文献求助10
15秒前
Annnnnnnnnn完成签到,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
er123721应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
20秒前
21秒前
小蘑菇应助Joy采纳,获得30
25秒前
理学猫发布了新的文献求助10
26秒前
顾矜应助悦耳如彤采纳,获得10
27秒前
29秒前
不机智的大鹅完成签到 ,获得积分10
29秒前
优美的剑愁完成签到,获得积分10
32秒前
35秒前
皮凡发布了新的文献求助10
38秒前
脑洞疼应助xiaoxiao采纳,获得10
38秒前
chenjian完成签到,获得积分10
39秒前
852应助欢呼飞风采纳,获得10
39秒前
贾敬坤完成签到,获得积分10
39秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443519
求助须知:如何正确求助?哪些是违规求助? 4553411
关于积分的说明 14241882
捐赠科研通 4475084
什么是DOI,文献DOI怎么找? 2452256
邀请新用户注册赠送积分活动 1443172
关于科研通互助平台的介绍 1418794