Semi‐supervised graph convolutional networks for the domain adaptive recognition of thyroid nodules in cross‐device ultrasound images

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 甲状腺结节 图形 域适应 深度学习 领域(数学分析) 计算机辅助诊断 计算机视觉 分类器(UML) 甲状腺 医学 数学 数学分析 内科学 理论计算机科学
作者
Kun Zhang,Zhongyu Li,Cai Chang,Jingyi Liu,Dou Xu,Chaowei Fang,Peng Huang,Ying Wang,Meng Yang,Shi Chang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7806-7821 被引量:2
标识
DOI:10.1002/mp.16384
摘要

Ultrasound plays a critical role in the early screening and diagnosis of cancers. Although deep neural networks have been widely investigated in the computer-aided diagnosis (CAD) of different medical images, diverse ultrasound devices, and image modalities pose challenges for clinical applications, especially in the recognition of thyroid nodules having various shapes and sizes. More generalized and extensible methods need to be developed for the cross-devices recognition of thyroid nodules.In this work, a semi-supervised graph convolutional deep learning framework is proposed for the domain adaptative recognition of thyroid nodules across several ultrasound devices. A deep classification network, trained on a source domain with a specific device, can be transferred to recognize thyroid nodules on the target domain with other devices, using only few manual annotated ultrasound images.This study presents a semi-supervised graph-convolutional-network-based domain adaptation framework, namely Semi-GCNs-DA. Based on the ResNet backbone, it is extended in three aspects for domain adaptation, that is, graph convolutional networks (GCNs) for the connection construction between source and target domains, semi-supervised GCNs for accurate target domain recognition, and pseudo labels for unlabeled target domains. Data were collected from 1498 patients comprising 12 108 images with or without thyroid nodules under three different ultrasound devices. Accuracy, Sensitivity and Specificity were used for the performance evaluation.The proposed method was validated on six groups of data for a single source domain adaptation task, the mean Accuracy was 0.9719 ± 0.0023, 0.9928 ± 0.0022, 0.9353 ± 0.0105, 0.8727 ± 0.0021, 0.7596 ± 0.0045, 0.8482 ± 0.0092, which achieved better performance in comparison with the state-of-the-art. The proposed method was also validated on three groups of multiple source domain adaptation tasks. In particular, when using X60 and HS50 as the source domain data, and H60 as the target domain, it can achieve the Accuracy of 0.8829 ± 0.0079, Sensitivity of 0.9757 ± 0.0001, and Specificity of 0.7894 ± 0.0164. Ablation experiments also demonstrated the effectiveness of the proposed modules.The developed Semi-GCNs-DA framework can effectively recognize thyroid nodules on different ultrasound devices. The developed semi-supervised GCNs can be further extended to the domain adaptation problems for other modalities of medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李白的白123完成签到,获得积分10
1秒前
2秒前
共享精神应助夜阑卧听采纳,获得10
3秒前
3秒前
卷卷完成签到 ,获得积分10
4秒前
英吉利25发布了新的文献求助10
5秒前
5秒前
7秒前
留白完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
顺利毕业完成签到,获得积分10
8秒前
准时毕业发布了新的文献求助10
8秒前
9秒前
陈芷慧关注了科研通微信公众号
11秒前
cyyyyyy发布了新的文献求助10
11秒前
conezyme完成签到,获得积分20
11秒前
12秒前
sunliying完成签到 ,获得积分10
12秒前
12秒前
曹孟馨发布了新的文献求助10
12秒前
Iridescent完成签到 ,获得积分10
12秒前
14秒前
14秒前
田恬完成签到,获得积分10
15秒前
15秒前
15秒前
沧海医僧笑完成签到,获得积分20
17秒前
Ava应助诡瞳GT采纳,获得10
18秒前
18秒前
19秒前
19秒前
19秒前
yutian完成签到,获得积分10
19秒前
liuyu0209发布了新的文献求助10
19秒前
饱满南松发布了新的文献求助30
22秒前
wsw发布了新的文献求助10
22秒前
czx完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5015531
求助须知:如何正确求助?哪些是违规求助? 4255927
关于积分的说明 13263035
捐赠科研通 4059770
什么是DOI,文献DOI怎么找? 2220432
邀请新用户注册赠送积分活动 1229731
关于科研通互助平台的介绍 1152364