Semi‐supervised graph convolutional networks for the domain adaptive recognition of thyroid nodules in cross‐device ultrasound images

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 甲状腺结节 图形 域适应 深度学习 领域(数学分析) 计算机辅助诊断 计算机视觉 分类器(UML) 甲状腺 医学 数学 数学分析 内科学 理论计算机科学
作者
Kun Zhang,Zhongyu Li,Cai Chang,Jingyi Liu,Dou Xu,Chaowei Fang,Peng Huang,Ying Wang,Meng Yang,Shi Chang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7806-7821 被引量:2
标识
DOI:10.1002/mp.16384
摘要

Ultrasound plays a critical role in the early screening and diagnosis of cancers. Although deep neural networks have been widely investigated in the computer-aided diagnosis (CAD) of different medical images, diverse ultrasound devices, and image modalities pose challenges for clinical applications, especially in the recognition of thyroid nodules having various shapes and sizes. More generalized and extensible methods need to be developed for the cross-devices recognition of thyroid nodules.In this work, a semi-supervised graph convolutional deep learning framework is proposed for the domain adaptative recognition of thyroid nodules across several ultrasound devices. A deep classification network, trained on a source domain with a specific device, can be transferred to recognize thyroid nodules on the target domain with other devices, using only few manual annotated ultrasound images.This study presents a semi-supervised graph-convolutional-network-based domain adaptation framework, namely Semi-GCNs-DA. Based on the ResNet backbone, it is extended in three aspects for domain adaptation, that is, graph convolutional networks (GCNs) for the connection construction between source and target domains, semi-supervised GCNs for accurate target domain recognition, and pseudo labels for unlabeled target domains. Data were collected from 1498 patients comprising 12 108 images with or without thyroid nodules under three different ultrasound devices. Accuracy, Sensitivity and Specificity were used for the performance evaluation.The proposed method was validated on six groups of data for a single source domain adaptation task, the mean Accuracy was 0.9719 ± 0.0023, 0.9928 ± 0.0022, 0.9353 ± 0.0105, 0.8727 ± 0.0021, 0.7596 ± 0.0045, 0.8482 ± 0.0092, which achieved better performance in comparison with the state-of-the-art. The proposed method was also validated on three groups of multiple source domain adaptation tasks. In particular, when using X60 and HS50 as the source domain data, and H60 as the target domain, it can achieve the Accuracy of 0.8829 ± 0.0079, Sensitivity of 0.9757 ± 0.0001, and Specificity of 0.7894 ± 0.0164. Ablation experiments also demonstrated the effectiveness of the proposed modules.The developed Semi-GCNs-DA framework can effectively recognize thyroid nodules on different ultrasound devices. The developed semi-supervised GCNs can be further extended to the domain adaptation problems for other modalities of medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
学术疯子发布了新的文献求助10
刚刚
英俊的铭应助鱼鱼采纳,获得10
1秒前
mona发布了新的文献求助10
1秒前
汤佳瑶关注了科研通微信公众号
1秒前
Sky完成签到,获得积分10
1秒前
李进步完成签到,获得积分10
2秒前
2秒前
无花果应助可乐清欢采纳,获得10
2秒前
wzm发布了新的文献求助10
2秒前
zxh发布了新的文献求助10
3秒前
SYLH应助123采纳,获得20
3秒前
闹心发布了新的文献求助10
3秒前
倪小呆发布了新的文献求助10
3秒前
我是老大应助薄饼哥丶采纳,获得10
4秒前
4秒前
5秒前
5秒前
西红柿发布了新的文献求助10
5秒前
kk完成签到,获得积分10
6秒前
gz发布了新的文献求助10
6秒前
6秒前
6秒前
领导范儿应助katsuras采纳,获得10
7秒前
anan发布了新的文献求助10
7秒前
共享精神应助马绿旋采纳,获得10
8秒前
我是老大应助奥奥酱大人采纳,获得10
8秒前
弥漫的橘完成签到,获得积分10
9秒前
stacy发布了新的文献求助10
9秒前
10秒前
11秒前
13秒前
13秒前
gan完成签到,获得积分10
13秒前
涛子11111发布了新的文献求助10
14秒前
mona完成签到,获得积分10
14秒前
彭于彦祖应助胡国伟采纳,获得100
14秒前
二三应助点墨采纳,获得20
14秒前
15秒前
zjy关闭了zjy文献求助
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406