材料科学
掺杂剂
佩多:嘘
烷基
聚合物
钙钛矿(结构)
结晶度
化学工程
光电子学
有机化学
复合材料
兴奋剂
工程类
化学
作者
Chun‐Hsiao Kuan,Rajendiran Balasaravanan,Shih‐Min Hsu,Jen‐Shyang Ni,Yi‐Tai Tsai,ZhongXiang Zhang,Ming‐Chou Chen,Eric Wei‐Guang Diau
标识
DOI:10.1002/adma.202300681
摘要
A new set of pyrrolopyrrole-based (PPr) polymers incorporated with thioalkylated/alkylated bithiophene (SBT/BT) is synthesized and explored as hole-transporting materials (HTMs) for Sn-based perovskite solar cells (TPSCs). Three bithiophenyl spacers bearing the thioalkylated hexyl (SBT-6), thioalkylated tetradecyl (SBT-14), and tetradecyl (BT-14) chains are utilized to examine the effect of the alkyl chain lengths. Among them, the TPSCs are fabricated using PPr-SBT-14 as HTMs through a two-step approach by attaining a power conversion efficiency (PCE) of 7.6% with a remarkable long-term stability beyond 6000 h, which has not been reported elsewhere for a non-PEDOT:PSS-based TPSC. The PPr-SBT-14 device is stable under light irradiation for 5 h in air (50% relative humidity) at the maximum power point (MPP). The highly planar structure, strong intramolecular S(alkyl)···S(thiophene) interactions, and extended π-conjugation of SBT enable the PPr-SBT-14 device to outperform the standard poly(3-hexylthiophene,-2,5-diyl (P3HT) and other devices. The longer thio-tetradecyl chain in SBT-14 restricts molecular rotation and strongly affects the molecular conformation, solubility, and film wettability over other polymers. Thus, the present study makes a promising dopant-free polymeric HTM model for the future design of highly efficient and stable TPSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI