卷积神经网络
模式识别(心理学)
断层(地质)
人工神经网络
分类器(UML)
人工智能
计算机科学
特征向量
频道(广播)
过程(计算)
工程类
计算机网络
操作系统
地质学
地震学
作者
Qinghong Xu,Hong Jiang,Xiangfeng Zhang,Jun Li,Juntao Ye
出处
期刊:Sensors
[MDPI AG]
日期:2023-04-08
卷期号:23 (8): 3827-3827
被引量:10
摘要
Gearboxes are one of the most widely used speed and power transfer elements in rotating machinery. Highly accurate compound fault diagnosis of gearboxes is of great significance for the safe and reliable operation of rotating machinery systems. However, traditional compound fault diagnosis methods treat compound faults as an independent fault mode in the diagnosis process and cannot decouple them into multiple single faults. To address this problem, this paper proposes a gearbox compound fault diagnosis method. First, a multiscale convolutional neural network (MSCNN) is used as a feature learning model, which can effectively mine the compound fault information from vibration signals. Then, an improved hybrid attention module, named the channel-space attention module (CSAM), is proposed. It is embedded into the MSCNN to assign weights to multiscale features for enhancing the feature differentiation processing ability of the MSCNN. The new neural network is named CSAM-MSCNN. Finally, a multilabel classifier is used to output single or multiple labels for recognizing single or compound faults. The effectiveness of the method was verified with two gearbox datasets. The results show that the method possesses higher accuracy and stability than other models for gearbox compound fault diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI