Knowledge-aware sequence modelling with deep learning for online course recommendation

计算机科学 人工智能 依赖关系(UML) 图形 依赖关系图 深度学习 机器学习 推荐系统 序列(生物学) 序列学习 课程(导航) 理论计算机科学 生物 遗传学 物理 天文
作者
Weiwei Deng,Peihu Zhu,Han Chen,Tao Yuan,Ji Wu
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (4): 103377-103377 被引量:14
标识
DOI:10.1016/j.ipm.2023.103377
摘要

The recent boom in online courses has necessitated personalized online course recommendation. Modelling the learning sequences of users is key for course recommendation because the sequences contain the dynamic learning interests of the users. However, current course recommendation methods ignore heterogeneous course information and collective sequential dependency between courses when modelling the learning sequences. We thus propose a novel online course recommendation method based on knowledge graph and deep learning which models course information via a course knowledge graph and represents courses using TransD. It then develops a bidirectional long short-term memory network, convolutional neural network, and multi-layer perceptron for learning sequence modelling and course recommendation. A public dataset called MOOCCube was used to evaluate the proposed method. Experimental results show that: (1) employing the course knowledge graph in learning sequence modelling improves averagely the performance of our method by 13.658%, 16.42%, and 15.39% in terms of HR@K, MRR@K, and NDCG@K; (2) modelling the collective sequential dependency improves averagely the performance by 4.11%, 6.37%, and 5.47% in terms of the above metrics; and (3) our method outperforms popular methods with the course knowledge graph in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的行云应助啁啾采纳,获得10
刚刚
ZL关注了科研通微信公众号
刚刚
zhanyu完成签到,获得积分10
刚刚
FashionBoy应助Vicky0503采纳,获得10
刚刚
英姑应助橙子采纳,获得10
1秒前
LeuinPonsgi发布了新的文献求助10
1秒前
Ava应助六碗鱼采纳,获得10
1秒前
2秒前
追寻远航完成签到,获得积分10
2秒前
2秒前
2秒前
施施发布了新的文献求助30
3秒前
4秒前
kb发布了新的文献求助10
4秒前
诗筠完成签到 ,获得积分10
4秒前
4秒前
飞飞完成签到,获得积分20
4秒前
vincy完成签到 ,获得积分10
5秒前
6秒前
所所应助拉布拉多多不多采纳,获得10
6秒前
Akim应助若离采纳,获得10
7秒前
王春起发布了新的文献求助10
7秒前
9秒前
10秒前
周计划钒发布了新的文献求助50
10秒前
10秒前
SCI_Dark工人完成签到 ,获得积分10
10秒前
wang完成签到,获得积分10
10秒前
紫津完成签到 ,获得积分10
10秒前
空洛发布了新的文献求助50
10秒前
商毛毛发布了新的文献求助10
10秒前
11秒前
清修发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
风中的青完成签到,获得积分10
12秒前
12秒前
优雅的行云应助宋磊采纳,获得10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308038
求助须知:如何正确求助?哪些是违规求助? 2941584
关于积分的说明 8504244
捐赠科研通 2616093
什么是DOI,文献DOI怎么找? 1429449
科研通“疑难数据库(出版商)”最低求助积分说明 663767
邀请新用户注册赠送积分活动 648712