MT2DInv-Unet: A 2D magnetotelluric inversion method based on deep-learning technology

大地电磁法 反演(地质) 计算机科学 算法 深度学习 人工智能 地球物理学 地震学 地质学 电气工程 工程类 电阻率和电导率 构造学
作者
Kejia Pan,Weiwei Ling,Jiajing Zhang,Xin Zhong,Zhengyong Ren,Shuanggui Hu,Dongdong He,Jingtian Tang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (2): G13-G27
标识
DOI:10.1190/geo2023-0004.1
摘要

Traditional gradient-based inversion methods usually suffer from the problems of falling into local minima and relying heavily on initial guesses. Deep-learning methods have received increasing attention due to their excellent nonlinear fitting ability. However, given the recent application of deep-learning methods in the field of magnetotelluric (MT) inversion, there are currently challenges associated with achieving high inversion resolution and extracting sufficient features. We develop a neural network model (called MT2DInv-Unet) based on the deformable convolution for 2D MT inversion to approximate the nonlinear mapping from the MT response data to the resistivity model. The deformable convolution is achieved by adding an offset to each sample point of the conventional convolution operation, which extracts hidden relationships and allows the flexible adjustment of the size and shape of the feature region. Meanwhile, we design the network structure with multiscale residual blocks, which effectively extract the multiscale features of the MT response data. This design not only enhances the network performance but also alleviates issues such as vanishing gradients and network degradation. The results of synthetic models indicate that our network inversion method has stable convergence, good robustness, and generalization performance, and it performs better than the fully convolutional neural network and U-Net network. Finally, the inversion results of field data show that MT2DInv-Unet can effectively obtain a reliable underground resistivity structure and has a good application prospect in MT inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加快步伐发布了新的文献求助10
刚刚
搜集达人应助旭日采纳,获得10
1秒前
prime发布了新的文献求助10
3秒前
螺丝老人发布了新的文献求助10
3秒前
万能图书馆应助聪慧芷巧采纳,获得10
3秒前
扶苏发布了新的文献求助10
6秒前
赘婿应助加快步伐采纳,获得10
6秒前
7秒前
CipherSage应助聪慧芷巧采纳,获得30
7秒前
卑鄙之风完成签到,获得积分10
8秒前
9秒前
liushiyi完成签到,获得积分10
10秒前
cookie1209发布了新的文献求助10
11秒前
可爱的函函应助聪慧芷巧采纳,获得30
11秒前
13秒前
prime完成签到,获得积分10
13秒前
星辰大海应助vanHaren采纳,获得10
14秒前
15秒前
起司应助cookie1209采纳,获得10
15秒前
15秒前
LZNUDT发布了新的文献求助10
15秒前
完美的水杯完成签到 ,获得积分10
16秒前
MichaelLi发布了新的文献求助10
17秒前
17秒前
小蘑菇应助雪雪儿采纳,获得10
18秒前
Owen应助LZNUDT采纳,获得10
18秒前
脑洞疼应助聪慧芷巧采纳,获得10
19秒前
19秒前
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
20秒前
徐小徐发布了新的文献求助10
20秒前
ding应助科研通管家采纳,获得10
20秒前
20秒前
英姑应助好看的鸵鸟采纳,获得10
20秒前
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341