MT2DInv-Unet: A 2D magnetotelluric inversion method based on deep-learning technology

大地电磁法 反演(地质) 计算机科学 算法 深度学习 人工智能 地球物理学 地震学 地质学 电气工程 工程类 电阻率和电导率 构造学
作者
Kejia Pan,Weiwei Ling,Jiajing Zhang,Xin Zhong,Zhengyong Ren,Shuanggui Hu,Dongdong He,Jingtian Tang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (2): G13-G27
标识
DOI:10.1190/geo2023-0004.1
摘要

Traditional gradient-based inversion methods usually suffer from the problems of falling into local minima and relying heavily on initial guesses. Deep-learning methods have received increasing attention due to their excellent nonlinear fitting ability. However, given the recent application of deep-learning methods in the field of magnetotelluric (MT) inversion, there are currently challenges associated with achieving high inversion resolution and extracting sufficient features. We develop a neural network model (called MT2DInv-Unet) based on the deformable convolution for 2D MT inversion to approximate the nonlinear mapping from the MT response data to the resistivity model. The deformable convolution is achieved by adding an offset to each sample point of the conventional convolution operation, which extracts hidden relationships and allows the flexible adjustment of the size and shape of the feature region. Meanwhile, we design the network structure with multiscale residual blocks, which effectively extract the multiscale features of the MT response data. This design not only enhances the network performance but also alleviates issues such as vanishing gradients and network degradation. The results of synthetic models indicate that our network inversion method has stable convergence, good robustness, and generalization performance, and it performs better than the fully convolutional neural network and U-Net network. Finally, the inversion results of field data show that MT2DInv-Unet can effectively obtain a reliable underground resistivity structure and has a good application prospect in MT inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助幸福胡萝卜采纳,获得10
刚刚
明理的小甜瓜完成签到,获得积分10
1秒前
1秒前
33333完成签到,获得积分20
1秒前
1秒前
1秒前
756发布了新的文献求助10
1秒前
2秒前
科研通AI5应助GHOST采纳,获得10
2秒前
2秒前
罗实完成签到,获得积分10
3秒前
科研通AI2S应助k7采纳,获得10
3秒前
3秒前
粱自中完成签到,获得积分10
3秒前
luca发布了新的文献求助30
3秒前
3秒前
4秒前
唉呦嘿完成签到,获得积分10
4秒前
dan1029发布了新的文献求助10
5秒前
mc完成签到,获得积分10
5秒前
6秒前
zhaoyue完成签到,获得积分20
6秒前
科研通AI2S应助neil采纳,获得10
7秒前
宇宙无敌完成签到 ,获得积分10
8秒前
SY发布了新的文献求助10
8秒前
Lucas应助小田采纳,获得10
8秒前
叶飞荷发布了新的文献求助10
9秒前
9秒前
9秒前
无悔呀发布了新的文献求助10
9秒前
Ll发布了新的文献求助10
9秒前
纯真抽屉发布了新的文献求助10
9秒前
晖晖shining完成签到,获得积分10
10秒前
小钻风完成签到,获得积分20
10秒前
11秒前
明月照我程完成签到,获得积分10
11秒前
11秒前
小虎完成签到,获得积分10
11秒前
Wency完成签到,获得积分10
11秒前
缥缈的铅笔完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762