An automated method for tendon image segmentation on ultrasound using grey-level co-occurrence matrix features and hidden Gaussian Markov random fields

人工智能 分割 模式识别(心理学) 肌腱 计算机科学 超声波 图像分割 随机森林 决策树 医学 计算机视觉 放射科 解剖
作者
Isabelle Scott,David Connell,Derek E. Moulton,Sarah L. Waters,Ana I. L. Namburete,Anurag Arnab,Peter Malliaras
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107872-107872 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107872
摘要

Despite knowledge of qualitative changes that occur on ultrasound in tendinopathy, there is currently no objective and reliable means to quantify the severity or prognosis of tendinopathy on ultrasound. The primary objective of this study is to produce a quantitative and automated means of inferring potential structural changes in tendinopathy by developing and implementing an algorithm which performs a texture based segmentation of tendon ultrasound (US) images. A model-based segmentation approach is used which combines Gaussian mixture models, Markov random field theory and grey-level co-occurrence (GLCM) features. The algorithm is trained and tested on 49 longitudinal B-mode ultrasound images of the Achilles tendons which are labelled as tendinopathic (24) or healthy (25). Hyperparameters are tuned, using a training set of 25 images, to optimise a decision tree based classification of the images from texture class proportions. We segment and classify the remaining test images using the decision tree. Our approach successfully detects a difference in the texture profiles of tendinopathic and healthy tendons, with 22/24 of the test images accurately classified based on a simple texture proportion cut-off threshold. Results for the tendinopathic images are also collated to gain insight into the topology of structural changes that occur with tendinopathy. It is evident that distinct textures, which are predominantly present in tendinopathic tendons, appear most commonly near the transverse boundary of the tendon, though there was a large variability among diseased tendons. The GLCM based segmentation of tendons under ultrasound resulted in distinct segmentations between healthy and tendinopathic tendons and provides a potential tool to objectively quantify damage in tendinopathy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耶耶完成签到,获得积分10
刚刚
刚刚
灵长类发布了新的文献求助30
刚刚
刚刚
落樱发布了新的文献求助10
刚刚
dr1nk完成签到,获得积分10
1秒前
七七七发布了新的文献求助10
2秒前
Usin发布了新的文献求助10
2秒前
过过过发布了新的文献求助10
2秒前
bluemary发布了新的文献求助10
3秒前
小马甲应助jky45采纳,获得10
3秒前
汉堡包应助kk采纳,获得10
3秒前
bailin完成签到,获得积分10
4秒前
5秒前
Jasper应助帅b采纳,获得10
5秒前
6秒前
Alang完成签到 ,获得积分10
6秒前
6秒前
6秒前
一个果儿应助nini采纳,获得30
7秒前
在水一方应助ww采纳,获得10
7秒前
Yuki发布了新的文献求助30
8秒前
8秒前
十六行动派完成签到,获得积分10
9秒前
王海祥完成签到 ,获得积分10
9秒前
bailin发布了新的文献求助10
9秒前
9秒前
信远征完成签到,获得积分10
10秒前
10秒前
行走De太阳花完成签到,获得积分10
10秒前
隐形曼青应助高高采纳,获得10
10秒前
10秒前
11秒前
木木完成签到,获得积分10
11秒前
星辰大海应助zpctx采纳,获得10
11秒前
超帅的成败完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
华仔应助zcy采纳,获得10
12秒前
jms发布了新的文献求助10
12秒前
yy发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609676
求助须知:如何正确求助?哪些是违规求助? 4694236
关于积分的说明 14881785
捐赠科研通 4720035
什么是DOI,文献DOI怎么找? 2544827
邀请新用户注册赠送积分活动 1509694
关于科研通互助平台的介绍 1472981