An automated method for tendon image segmentation on ultrasound using grey-level co-occurrence matrix features and hidden Gaussian Markov random fields

人工智能 分割 模式识别(心理学) 肌腱 计算机科学 超声波 图像分割 随机森林 决策树 医学 计算机视觉 放射科 解剖
作者
Isabelle Scott,David Connell,Derek E. Moulton,Sarah L. Waters,Ana I. L. Namburete,Anurag Arnab,Peter Malliaras
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107872-107872 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107872
摘要

Despite knowledge of qualitative changes that occur on ultrasound in tendinopathy, there is currently no objective and reliable means to quantify the severity or prognosis of tendinopathy on ultrasound. The primary objective of this study is to produce a quantitative and automated means of inferring potential structural changes in tendinopathy by developing and implementing an algorithm which performs a texture based segmentation of tendon ultrasound (US) images. A model-based segmentation approach is used which combines Gaussian mixture models, Markov random field theory and grey-level co-occurrence (GLCM) features. The algorithm is trained and tested on 49 longitudinal B-mode ultrasound images of the Achilles tendons which are labelled as tendinopathic (24) or healthy (25). Hyperparameters are tuned, using a training set of 25 images, to optimise a decision tree based classification of the images from texture class proportions. We segment and classify the remaining test images using the decision tree. Our approach successfully detects a difference in the texture profiles of tendinopathic and healthy tendons, with 22/24 of the test images accurately classified based on a simple texture proportion cut-off threshold. Results for the tendinopathic images are also collated to gain insight into the topology of structural changes that occur with tendinopathy. It is evident that distinct textures, which are predominantly present in tendinopathic tendons, appear most commonly near the transverse boundary of the tendon, though there was a large variability among diseased tendons. The GLCM based segmentation of tendons under ultrasound resulted in distinct segmentations between healthy and tendinopathic tendons and provides a potential tool to objectively quantify damage in tendinopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助小梨采纳,获得10
刚刚
1秒前
JamesPei应助过时的热狗采纳,获得10
1秒前
窦豆发布了新的文献求助10
1秒前
Ava应助复杂项链采纳,获得10
2秒前
yx_cheng应助ZAL采纳,获得30
2秒前
乐乐应助帅气的小鸭子采纳,获得10
3秒前
范范完成签到,获得积分10
4秒前
伊斯坦布尔的鱼应助樘樘采纳,获得10
4秒前
4秒前
Steven完成签到,获得积分10
4秒前
surprise完成签到,获得积分10
5秒前
5秒前
WW发布了新的文献求助10
5秒前
洪世贤发布了新的文献求助30
6秒前
7秒前
天天快乐应助卷儿采纳,获得10
7秒前
学术虫完成签到,获得积分10
7秒前
小羊咩咩发布了新的文献求助10
7秒前
斑马睡不着完成签到,获得积分10
8秒前
murongbo发布了新的文献求助10
9秒前
9秒前
9秒前
充电宝应助给大佬递茶采纳,获得10
9秒前
10秒前
lxh发布了新的文献求助10
10秒前
10秒前
bkagyin应助Dominic采纳,获得10
11秒前
Billy发布了新的文献求助10
11秒前
11秒前
12秒前
shinble发布了新的文献求助10
12秒前
13秒前
顺利的冰海完成签到,获得积分10
13秒前
小二郎应助Jasmine采纳,获得30
13秒前
14秒前
小二郎应助云中采纳,获得10
14秒前
星辰大海应助shuaiyuancheng采纳,获得10
14秒前
潘啊潘完成签到 ,获得积分10
15秒前
Focus发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971125
求助须知:如何正确求助?哪些是违规求助? 3515824
关于积分的说明 11179811
捐赠科研通 3250971
什么是DOI,文献DOI怎么找? 1795610
邀请新用户注册赠送积分活动 875897
科研通“疑难数据库(出版商)”最低求助积分说明 805207