An automated method for tendon image segmentation on ultrasound using grey-level co-occurrence matrix features and hidden Gaussian Markov random fields

人工智能 分割 模式识别(心理学) 肌腱 计算机科学 超声波 图像分割 随机森林 决策树 医学 计算机视觉 放射科 解剖
作者
Isabelle Scott,David Connell,Derek E. Moulton,Sarah L. Waters,Ana I. L. Namburete,Anurag Arnab,Peter Malliaras
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107872-107872 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107872
摘要

Despite knowledge of qualitative changes that occur on ultrasound in tendinopathy, there is currently no objective and reliable means to quantify the severity or prognosis of tendinopathy on ultrasound. The primary objective of this study is to produce a quantitative and automated means of inferring potential structural changes in tendinopathy by developing and implementing an algorithm which performs a texture based segmentation of tendon ultrasound (US) images. A model-based segmentation approach is used which combines Gaussian mixture models, Markov random field theory and grey-level co-occurrence (GLCM) features. The algorithm is trained and tested on 49 longitudinal B-mode ultrasound images of the Achilles tendons which are labelled as tendinopathic (24) or healthy (25). Hyperparameters are tuned, using a training set of 25 images, to optimise a decision tree based classification of the images from texture class proportions. We segment and classify the remaining test images using the decision tree. Our approach successfully detects a difference in the texture profiles of tendinopathic and healthy tendons, with 22/24 of the test images accurately classified based on a simple texture proportion cut-off threshold. Results for the tendinopathic images are also collated to gain insight into the topology of structural changes that occur with tendinopathy. It is evident that distinct textures, which are predominantly present in tendinopathic tendons, appear most commonly near the transverse boundary of the tendon, though there was a large variability among diseased tendons. The GLCM based segmentation of tendons under ultrasound resulted in distinct segmentations between healthy and tendinopathic tendons and provides a potential tool to objectively quantify damage in tendinopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZQ完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Lina HE完成签到 ,获得积分10
3秒前
852应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
进步完成签到,获得积分10
4秒前
852应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
iNk应助dh采纳,获得20
4秒前
orixero应助科研通管家采纳,获得30
4秒前
思源应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
Ezio_sunhao完成签到,获得积分10
6秒前
pangao发布了新的文献求助10
6秒前
wys完成签到,获得积分10
7秒前
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048