亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An automated method for tendon image segmentation on ultrasound using grey-level co-occurrence matrix features and hidden Gaussian Markov random fields

人工智能 分割 模式识别(心理学) 肌腱 计算机科学 超声波 图像分割 随机森林 决策树 医学 计算机视觉 放射科 解剖
作者
Isabelle Scott,David Connell,Derek E. Moulton,Sarah L. Waters,Ana I. L. Namburete,Anurag Arnab,Peter Malliaras
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107872-107872 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107872
摘要

Despite knowledge of qualitative changes that occur on ultrasound in tendinopathy, there is currently no objective and reliable means to quantify the severity or prognosis of tendinopathy on ultrasound. The primary objective of this study is to produce a quantitative and automated means of inferring potential structural changes in tendinopathy by developing and implementing an algorithm which performs a texture based segmentation of tendon ultrasound (US) images. A model-based segmentation approach is used which combines Gaussian mixture models, Markov random field theory and grey-level co-occurrence (GLCM) features. The algorithm is trained and tested on 49 longitudinal B-mode ultrasound images of the Achilles tendons which are labelled as tendinopathic (24) or healthy (25). Hyperparameters are tuned, using a training set of 25 images, to optimise a decision tree based classification of the images from texture class proportions. We segment and classify the remaining test images using the decision tree. Our approach successfully detects a difference in the texture profiles of tendinopathic and healthy tendons, with 22/24 of the test images accurately classified based on a simple texture proportion cut-off threshold. Results for the tendinopathic images are also collated to gain insight into the topology of structural changes that occur with tendinopathy. It is evident that distinct textures, which are predominantly present in tendinopathic tendons, appear most commonly near the transverse boundary of the tendon, though there was a large variability among diseased tendons. The GLCM based segmentation of tendons under ultrasound resulted in distinct segmentations between healthy and tendinopathic tendons and provides a potential tool to objectively quantify damage in tendinopathy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wwwqh发布了新的文献求助10
2秒前
科目三应助幽默迎蕾采纳,获得10
5秒前
6秒前
NattyPoe应助ISLAND采纳,获得10
8秒前
Erren完成签到 ,获得积分10
13秒前
doctor2023完成签到,获得积分10
13秒前
Fyt00完成签到,获得积分10
14秒前
王颖超完成签到,获得积分10
14秒前
幽默迎蕾完成签到,获得积分10
18秒前
SciGPT应助mm采纳,获得10
24秒前
27秒前
34秒前
陈小子完成签到 ,获得积分10
35秒前
44秒前
45秒前
小二郎应助科研通管家采纳,获得10
53秒前
万能图书馆应助科研小白采纳,获得10
53秒前
Simone完成签到,获得积分10
54秒前
量子星尘发布了新的文献求助10
56秒前
Karol发布了新的文献求助10
59秒前
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
renerxiao完成签到 ,获得积分10
1分钟前
高高发布了新的文献求助10
1分钟前
1分钟前
1分钟前
星辰大海应助Dreamchaser采纳,获得10
1分钟前
段红琼发布了新的文献求助10
1分钟前
严伟完成签到 ,获得积分10
1分钟前
1分钟前
自然的小宋完成签到,获得积分20
1分钟前
1分钟前
1分钟前
Shona发布了新的文献求助10
1分钟前
天真的万声完成签到,获得积分10
1分钟前
FashionBoy应助段红琼采纳,获得10
1分钟前
青山完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780136
求助须知:如何正确求助?哪些是违规求助? 5652435
关于积分的说明 15452791
捐赠科研通 4910922
什么是DOI,文献DOI怎么找? 2643112
邀请新用户注册赠送积分活动 1590741
关于科研通互助平台的介绍 1545245