An automated method for tendon image segmentation on ultrasound using grey-level co-occurrence matrix features and hidden Gaussian Markov random fields

人工智能 分割 模式识别(心理学) 肌腱 计算机科学 超声波 图像分割 随机森林 决策树 医学 计算机视觉 放射科 解剖
作者
Isabelle Scott,David Connell,Derek E. Moulton,Sarah L. Waters,Ana I. L. Namburete,Anurag Arnab,Peter Malliaras
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107872-107872 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107872
摘要

Despite knowledge of qualitative changes that occur on ultrasound in tendinopathy, there is currently no objective and reliable means to quantify the severity or prognosis of tendinopathy on ultrasound. The primary objective of this study is to produce a quantitative and automated means of inferring potential structural changes in tendinopathy by developing and implementing an algorithm which performs a texture based segmentation of tendon ultrasound (US) images. A model-based segmentation approach is used which combines Gaussian mixture models, Markov random field theory and grey-level co-occurrence (GLCM) features. The algorithm is trained and tested on 49 longitudinal B-mode ultrasound images of the Achilles tendons which are labelled as tendinopathic (24) or healthy (25). Hyperparameters are tuned, using a training set of 25 images, to optimise a decision tree based classification of the images from texture class proportions. We segment and classify the remaining test images using the decision tree. Our approach successfully detects a difference in the texture profiles of tendinopathic and healthy tendons, with 22/24 of the test images accurately classified based on a simple texture proportion cut-off threshold. Results for the tendinopathic images are also collated to gain insight into the topology of structural changes that occur with tendinopathy. It is evident that distinct textures, which are predominantly present in tendinopathic tendons, appear most commonly near the transverse boundary of the tendon, though there was a large variability among diseased tendons. The GLCM based segmentation of tendons under ultrasound resulted in distinct segmentations between healthy and tendinopathic tendons and provides a potential tool to objectively quantify damage in tendinopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo完成签到,获得积分10
1秒前
yinzy完成签到,获得积分10
1秒前
Gj完成签到,获得积分10
1秒前
hhm完成签到,获得积分10
1秒前
1秒前
感性的不惜完成签到,获得积分20
2秒前
carlitos完成签到 ,获得积分10
3秒前
少年旭完成签到,获得积分10
3秒前
www999完成签到,获得积分10
3秒前
Yolo完成签到,获得积分10
3秒前
abc完成签到 ,获得积分10
3秒前
上官若男应助Eileen采纳,获得10
4秒前
清爽的亦云完成签到,获得积分10
4秒前
iceeer完成签到,获得积分10
4秒前
CHSLN完成签到 ,获得积分10
4秒前
旺大财完成签到,获得积分10
4秒前
ZXG完成签到,获得积分10
5秒前
一只蓉馍馍完成签到,获得积分10
5秒前
zzz完成签到 ,获得积分10
5秒前
yueyue完成签到,获得积分10
5秒前
枣核儿发布了新的文献求助10
6秒前
细心的小懒虫完成签到,获得积分10
6秒前
6秒前
彩色半烟完成签到,获得积分10
6秒前
小蜜蜂完成签到,获得积分10
7秒前
欢喜素阴完成签到 ,获得积分10
7秒前
寒冷乐驹发布了新的文献求助10
8秒前
lezbj99发布了新的文献求助30
8秒前
lingxiao完成签到,获得积分10
8秒前
9秒前
程大大大教授完成签到,获得积分10
9秒前
waug完成签到,获得积分10
10秒前
善良海云完成签到,获得积分10
10秒前
xiaofei666完成签到,获得积分10
10秒前
高文强完成签到,获得积分10
11秒前
shufessm完成签到,获得积分0
12秒前
sdfwsdfsd完成签到,获得积分10
12秒前
L3完成签到,获得积分10
12秒前
xth完成签到 ,获得积分10
13秒前
都是应助戴小懒采纳,获得20
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565