亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An automated method for tendon image segmentation on ultrasound using grey-level co-occurrence matrix features and hidden Gaussian Markov random fields

人工智能 分割 模式识别(心理学) 肌腱 计算机科学 超声波 图像分割 随机森林 决策树 医学 计算机视觉 放射科 解剖
作者
Isabelle Scott,David Connell,Derek E. Moulton,Sarah L. Waters,Ana I. L. Namburete,Anurag Arnab,Peter Malliaras
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107872-107872 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107872
摘要

Despite knowledge of qualitative changes that occur on ultrasound in tendinopathy, there is currently no objective and reliable means to quantify the severity or prognosis of tendinopathy on ultrasound. The primary objective of this study is to produce a quantitative and automated means of inferring potential structural changes in tendinopathy by developing and implementing an algorithm which performs a texture based segmentation of tendon ultrasound (US) images. A model-based segmentation approach is used which combines Gaussian mixture models, Markov random field theory and grey-level co-occurrence (GLCM) features. The algorithm is trained and tested on 49 longitudinal B-mode ultrasound images of the Achilles tendons which are labelled as tendinopathic (24) or healthy (25). Hyperparameters are tuned, using a training set of 25 images, to optimise a decision tree based classification of the images from texture class proportions. We segment and classify the remaining test images using the decision tree. Our approach successfully detects a difference in the texture profiles of tendinopathic and healthy tendons, with 22/24 of the test images accurately classified based on a simple texture proportion cut-off threshold. Results for the tendinopathic images are also collated to gain insight into the topology of structural changes that occur with tendinopathy. It is evident that distinct textures, which are predominantly present in tendinopathic tendons, appear most commonly near the transverse boundary of the tendon, though there was a large variability among diseased tendons. The GLCM based segmentation of tendons under ultrasound resulted in distinct segmentations between healthy and tendinopathic tendons and provides a potential tool to objectively quantify damage in tendinopathy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Yangpc采纳,获得150
2秒前
若宫伊芙应助舒物采纳,获得10
8秒前
隐形的烧鸭完成签到,获得积分10
20秒前
27秒前
wwdd发布了新的文献求助10
30秒前
keyanxinshou完成签到 ,获得积分10
35秒前
wwdd完成签到,获得积分10
38秒前
泯然完成签到,获得积分10
38秒前
39秒前
沉静的青旋完成签到 ,获得积分10
41秒前
善学以致用应助zh采纳,获得10
47秒前
49秒前
Jane发布了新的文献求助30
56秒前
1分钟前
zhaoeb发布了新的文献求助10
1分钟前
1分钟前
Gryphon完成签到,获得积分20
1分钟前
李冰洋完成签到,获得积分10
1分钟前
李冰洋发布了新的文献求助10
1分钟前
研友_VZG7GZ应助李冰洋采纳,获得10
1分钟前
yyds应助科研通管家采纳,获得100
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得50
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
sam发布了新的文献求助10
1分钟前
顾矜应助yuyu采纳,获得10
1分钟前
sam完成签到,获得积分10
1分钟前
1分钟前
衣裳薄完成签到,获得积分10
1分钟前
ForRITZ发布了新的文献求助10
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
9202211125发布了新的文献求助10
2分钟前
Ethan发布了新的文献求助30
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650677
求助须知:如何正确求助?哪些是违规求助? 4781288
关于积分的说明 15052487
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572338
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487341