Multi-task bioassay pre-training for protein-ligand binding affinity prediction

化学 计算机科学 任务(项目管理) 人工智能 药物发现 机器学习 一般化 蛋白质配体 计算生物学 数据挖掘 化学 生物信息学 生物 工程类 数学 生物化学 数学分析 系统工程
作者
Jiaxian Yan,Zhaofeng Ye,Ziyi Yang,Chengqiang Lu,Shengyu Zhang,Qi Liu,Jiezhong Qiu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1) 被引量:2
标识
DOI:10.1093/bib/bbad451
摘要

Abstract Protein–ligand binding affinity (PLBA) prediction is the fundamental task in drug discovery. Recently, various deep learning-based models predict binding affinity by incorporating the three-dimensional (3D) structure of protein–ligand complexes as input and achieving astounding progress. However, due to the scarcity of high-quality training data, the generalization ability of current models is still limited. Although there is a vast amount of affinity data available in large-scale databases such as ChEMBL, issues such as inconsistent affinity measurement labels (i.e. IC50, Ki, Kd), different experimental conditions, and the lack of available 3D binding structures complicate the development of high-precision affinity prediction models using these data. To address these issues, we (i) propose Multi-task Bioassay Pre-training (MBP), a pre-training framework for structure-based PLBA prediction; (ii) construct a pre-training dataset called ChEMBL-Dock with more than 300k experimentally measured affinity labels and about 2.8M docked 3D structures. By introducing multi-task pre-training to treat the prediction of different affinity labels as different tasks and classifying relative rankings between samples from the same bioassay, MBP learns robust and transferrable structural knowledge from our new ChEMBL-Dock dataset with varied and noisy labels. Experiments substantiate the capability of MBP on the structure-based PLBA prediction task. To the best of our knowledge, MBP is the first affinity pre-training model and shows great potential for future development. MBP web-server is now available for free at: https://huggingface.co/spaces/jiaxianustc/mbp.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XYZ完成签到 ,获得积分10
刚刚
刚刚
1秒前
小超人哈里完成签到,获得积分10
1秒前
3秒前
杨然发布了新的文献求助10
4秒前
5秒前
圆圆圆完成签到 ,获得积分10
7秒前
冷酷云朵发布了新的文献求助10
7秒前
7秒前
山月完成签到 ,获得积分10
7秒前
碧蓝的蜻蜓完成签到 ,获得积分10
10秒前
11秒前
平淡的谷秋完成签到 ,获得积分10
12秒前
XYZ发布了新的文献求助10
13秒前
杨然完成签到,获得积分10
14秒前
15秒前
ww完成签到,获得积分10
15秒前
Ldq发布了新的文献求助10
15秒前
Quanquan完成签到 ,获得积分10
15秒前
很酷的妞子完成签到 ,获得积分10
16秒前
ll完成签到 ,获得积分10
16秒前
小黄鸭发布了新的文献求助10
16秒前
烟花应助羊青丝采纳,获得10
17秒前
17秒前
清爽聋五发布了新的文献求助10
18秒前
雪落你看不见完成签到,获得积分10
19秒前
思源应助眼睛大的冰岚采纳,获得10
19秒前
BBQ发布了新的文献求助30
20秒前
syt发布了新的文献求助10
23秒前
28秒前
眼睛大的冰岚完成签到,获得积分10
28秒前
29秒前
所所应助科研通管家采纳,获得10
30秒前
充电宝应助科研通管家采纳,获得10
30秒前
思源应助科研通管家采纳,获得10
30秒前
英姑应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
科目三应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023