Convolutional neural network-assisted diagnosis of midpalatal suture maturation stage in cone-beam computed tomography

纤维接头 卷积神经网络 Cone(正式语言) 阶段(地层学) 锥束ct 断层摄影术 口腔正畸科 计算机科学 人工智能 医学 材料科学 计算机断层摄影术 牙科 放射科 地质学 算法 古生物学
作者
Mengyao Zhu,Yang Pan,Ce Bian,Feifei Zuo,Zhongmin Guo,Yufeng Wang,Yajie Wang,Yuxing Bai,Ning Zhang
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:141: 104808-104808 被引量:6
标识
DOI:10.1016/j.jdent.2023.104808
摘要

The selection of treatment for maxillary expansion is closely related to the calcification degree of the midpalatal suture. A classification method for individual assessment of the morphology of midpalatal suture in cone-beam computed tomography (CBCT) is useful for evaluating the calcification degree. Currently, convolutional neural networks (CNNs) have been introduced into the field of oral and maxillofacial imaging diagnosis. This study validated the ability of CNN models in assessing the maturation stage of the midpalatal suture. The existing CNN model ResNet50 was trained to locate the CBCT transverse plane which contained a complete midpalatal suture. ResNet18, ResNet50, RessNet101, Inception-v3, and Efficientnetv2-s models were trained to evaluate the midpalatal suture maturation stage. Multi-class classification metrics, accuracy, recall, precision, F1-score, and area under the curve values from the receiver operating characteristic curve were used to evaluate the performance of the models, and gradient-weighted class activation map technology was utilised to visualise five midpalatal suture maturation stages for each model. Resnet50 demonstrated an accuracy of 99.74 % in identifying the transverse plane that contained the complete midpalatal suture. The highest accuracies achieved on the two-stage, three-stage, and five-stage maturation classification tests were 95.15, 88.06, and 75.37 %, all of which exceeded the average accuracy of three experienced orthodontists. The CNN model can locate the plane of the midpalatal suture in CBCT images and can assist clinicians in assessing the maturation stage of the midpalatal suture to select the means of maxillary expansion. The application of artificial intelligence on CBCT midpalatal suture plane localisation and maturation stage evaluation enhances diagnostic and treatment efficiency and accuracy of individual assessment of midpalatal suture calcification degree. Additionally, it assists the clinical palatal expansion technique in achieving ideal results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fjh应助负责的方盒采纳,获得10
1秒前
bkagyin应助柴脱采纳,获得10
1秒前
1秒前
聪慧的凝丹完成签到,获得积分20
1秒前
Axeliar完成签到,获得积分10
2秒前
2秒前
可靠的线虫完成签到,获得积分10
3秒前
yy发布了新的文献求助20
3秒前
3秒前
XNDDY完成签到,获得积分10
4秒前
傲娇芷蝶完成签到 ,获得积分10
5秒前
任大师兄发布了新的文献求助200
5秒前
科研通AI5应助lqq采纳,获得10
6秒前
6秒前
思敏发布了新的文献求助10
6秒前
黄垚发布了新的文献求助10
6秒前
wangji_2017发布了新的文献求助10
7秒前
tangpc完成签到,获得积分10
7秒前
7秒前
nan发布了新的文献求助10
7秒前
7秒前
8秒前
lyj发布了新的文献求助10
10秒前
10秒前
勤奋幻柏完成签到,获得积分10
11秒前
东东呀发布了新的文献求助10
11秒前
MOTOMORI发布了新的文献求助10
12秒前
道阻且长发布了新的文献求助10
12秒前
bkagyin应助Drliu采纳,获得10
13秒前
13秒前
13秒前
深情安青应助景XN采纳,获得10
13秒前
14秒前
麻雀发布了新的文献求助10
14秒前
Qianbaor68应助聪慧的凝丹采纳,获得10
14秒前
SUNLE发布了新的文献求助10
14秒前
SciGPT应助道阻且长采纳,获得10
15秒前
田様应助yn采纳,获得10
15秒前
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734838
求助须知:如何正确求助?哪些是违规求助? 3278737
关于积分的说明 10011382
捐赠科研通 2995434
什么是DOI,文献DOI怎么找? 1643431
邀请新用户注册赠送积分活动 781171
科研通“疑难数据库(出版商)”最低求助积分说明 749290