General-purpose machine-learned potential for 16 elemental metals and their alloys

概括性 计算机科学 组分(热力学) 插值(计算机图形学) Atom(片上系统) 计算科学 人工智能 热力学 物理 并行计算 运动(物理) 心理学 心理治疗师
作者
Zheyong Fan,Keke Song,Rui Zhao,Jiahui Liu,Yanzhou Wang,Eric Lindgren,Yong Wang,Shunda Chen,Ke Xu,Ting Liang,Penghua Ying,Nan Xu,Zhiqiang Zhao,Jiuyang Shi,Junjie Wang,Shuang Lyu,Zezhu Zeng,Shirong Liang,Haikuan Dong,Ligang Sun,Yue Chen,Zhuhua Zhang,Wanlin Guo,Ping Qian,Jian Sun,Paul Erhart,Tapio Ala-Nissilä,Yanjing Su
出处
期刊:Research Square - Research Square 被引量:2
标识
DOI:10.21203/rs.3.rs-3612294/v1
摘要

Abstract Machine-learned potentials (MLPs) trained against quantum-mechanical reference data have demonstrated remarkable accuracy, surpassing empirical potentials. However, the absence of readily available general-purpose MLPs encompassing a broad spectrum of elements and their alloys hampers the applications of MLPs in materials science. In this study, we present a feasible approach for constructing a unified general-purpose MLP for numerous elements and showcase its capability by developing a model (UNEP-v1) for 16 elemental metals (Ag, Al, Au, Cr, Cu, Mg, Mo, Ni, Pb, Pd, Pt, Ta, Ti, V, W, Zr) and their diverse alloys. To achieve a complete representation of the chemical space, we demonstrate that employing 16 one-component and 120 two-component systems suffices, thereby avoiding the enumeration of all 65535 possible combinations for training data generation. Furthermore, we illustrate that systems with more components can be adequately represented as interpolation points in the descriptor space. Our unified MLP exhibits superior performance across various physical properties as compared to the embedded-atom method potential, while maintaining computational efficiency. It achieves a remarkable computational speed of 1.5 × 10 8 atom step / second in molecular dynamics simulations using eight 80-gigabyte A100 graphics cards, enabling simulations up to 100 million atoms. We demonstrate the generality and high efficiency of the MLP in studying plasticity and primary radiation damage in the MoTaVW refractory high-entropy alloys, showcasing its potential in unraveling complex materials behavior. This work represents a significant leap towards the construction of a unified general-purpose MLP encompassing the periodic table, with profound implications for materials research and computational science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianugui发布了新的文献求助10
1秒前
1秒前
小马甲应助无聊倩采纳,获得10
1秒前
倚宫完成签到,获得积分10
2秒前
科研小兔子完成签到,获得积分10
2秒前
2秒前
Haonan完成签到,获得积分10
2秒前
2秒前
Susan完成签到,获得积分10
3秒前
灵犀完成签到,获得积分10
3秒前
qidada完成签到,获得积分10
3秒前
Camellia发布了新的文献求助10
3秒前
y彤完成签到,获得积分10
3秒前
SY发布了新的文献求助10
4秒前
春困秋乏完成签到,获得积分10
4秒前
5秒前
慢慢地漫漫完成签到,获得积分10
5秒前
5秒前
kkkkkk完成签到,获得积分10
5秒前
深情安青应助大bulingbulin采纳,获得10
5秒前
冬虫夏草完成签到,获得积分10
5秒前
dududu发布了新的文献求助10
6秒前
6秒前
Orange应助wu采纳,获得10
6秒前
健康的饼干完成签到,获得积分10
6秒前
Shumin Wang完成签到,获得积分10
6秒前
shuke完成签到,获得积分10
6秒前
自然的衫完成签到 ,获得积分10
7秒前
马大人..完成签到,获得积分10
8秒前
海子完成签到,获得积分10
8秒前
卡乐瑞咩吹可完成签到,获得积分10
8秒前
36456657应助沉静水瑶采纳,获得10
9秒前
9秒前
呆瓜完成签到,获得积分10
9秒前
tianugui完成签到,获得积分10
9秒前
无名老大应助冷傲的小之采纳,获得30
9秒前
酷酷小子完成签到 ,获得积分10
10秒前
达达完成签到,获得积分10
10秒前
马大人..发布了新的文献求助10
11秒前
香蕉觅云应助affff采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450648
求助须知:如何正确求助?哪些是违规求助? 3046162
关于积分的说明 9005205
捐赠科研通 2734898
什么是DOI,文献DOI怎么找? 1500136
科研通“疑难数据库(出版商)”最低求助积分说明 693387
邀请新用户注册赠送积分活动 691589