Ligand and Structure-Based Drug Design (LBDD and SBDD): Promising Approaches to Discover New Drugs

虚拟筛选 计算机科学 药物发现 药品 过程(计算) 鉴定(生物学) 药物设计 数据科学 生化工程 工程类 风险分析(工程) 管理科学 医学 药理学 生物信息学 生物 操作系统 植物
作者
Igor José dos Santos Nascimento,Ricardo Olímpio de Moura
出处
期刊:BENTHAM SCIENCE PUBLISHERS eBooks [BENTHAM SCIENCE PUBLISHERS]
卷期号:: 1-32
标识
DOI:10.2174/9789815179934123010003
摘要

The drug discovery and development process are challenging and have undergone many changes over the last few years. Academic researchers and pharmaceutical companies invest thousands of dollars a year to search for drugs capable of improving and increasing people's life quality. This is an expensive, time-consuming, and multifaceted process requiring the integration of several fields of knowledge. For many years, the search for new drugs was focused on Target-Based Drug Design methods, identifying natural compounds or through empirical synthesis. However, with the improvement of molecular modeling techniques and the growth of computer science, Computer-Aided Drug Design (CADD) emerges as a promising alternative. Since the 1970s, its main approaches, Structure-Based Drug Design (SBDD) and Ligand-Based Drug Design (LBDD), have been responsible for discovering and designing several revolutionary drugs and promising lead and hit compounds. Based on this information, it is clear that these methods are essential in drug design campaigns. Finally, this chapter will explore approaches used in drug design, from the past to the present, from classical methods such as bioisosterism, molecular simplification, and hybridization, to computational methods such as docking, molecular dynamics (MD) simulations, and virtual screenings, and how these methods have been vital to the identification and design of promising drugs or compounds. Finally, we hope that this chapter guides researchers worldwide in rational drug design methods in which readers will learn about approaches and choose the one that best fits their research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
劲秉应助67采纳,获得10
1秒前
林林林应助贪玩语蓉采纳,获得10
1秒前
3秒前
Susan完成签到,获得积分10
6秒前
刻苦不弱发布了新的文献求助10
6秒前
7秒前
小飞完成签到 ,获得积分10
8秒前
bobo发布了新的文献求助10
9秒前
李健的小迷弟应助fifi采纳,获得10
10秒前
念姬完成签到 ,获得积分10
11秒前
16秒前
阔达的香之发布了新的文献求助200
17秒前
May完成签到 ,获得积分10
20秒前
zi应助菜菜采纳,获得10
21秒前
高强发布了新的文献求助10
22秒前
22秒前
NexusExplorer应助枍枫采纳,获得10
23秒前
24秒前
万能图书馆应助未来可期采纳,获得10
24秒前
zi完成签到,获得积分10
25秒前
fifi发布了新的文献求助10
28秒前
31秒前
32秒前
32秒前
枍枫发布了新的文献求助10
35秒前
大啊蓉发布了新的文献求助10
37秒前
Hello应助123采纳,获得10
38秒前
传奇3应助gogogo采纳,获得10
39秒前
41秒前
搜集达人应助bobo采纳,获得10
43秒前
44秒前
skx完成签到 ,获得积分10
46秒前
害羞耷完成签到 ,获得积分10
48秒前
忧虑的初晴应助徐若楠采纳,获得20
48秒前
Polymer72应助徐若楠采纳,获得20
49秒前
巫马秋寒发布了新的文献求助10
52秒前
55秒前
cym完成签到 ,获得积分10
57秒前
Owen应助鱼咬羊采纳,获得10
58秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352392
求助须知:如何正确求助?哪些是违规求助? 2977572
关于积分的说明 8680222
捐赠科研通 2658516
什么是DOI,文献DOI怎么找? 1455863
科研通“疑难数据库(出版商)”最低求助积分说明 674139
邀请新用户注册赠送积分活动 664679