Multi-scale representation of surface-enhanced Raman spectroscopy data for deep learning-based liver cancer detection

过度拟合 计算机科学 人工智能 机器学习 模式识别(心理学) 降维 表面增强拉曼光谱 小波 数据挖掘 人工神经网络 拉曼光谱 拉曼散射 光学 物理
作者
Yang Yang,Xingen Gao,Hongyi Zhang,Fei Chao,Huali Jiang,Junqi Huang,Juqiang Lin
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:308: 123764-123764 被引量:4
标识
DOI:10.1016/j.saa.2023.123764
摘要

The early detection of liver cancer greatly improves survival rates and allows for less invasive treatment options. As a non-invasive optical detection technique, Surface-Enhanced Raman Spectroscopy (SERS) has shown significant potential in early cancer detection, providing multiple advantages over conventional methods. The majority of existing cancer detection methods utilize multivariate statistical analysis to categorize SERS data. However, these methods are plagued by issues such as information loss during dimensionality reduction and inadequate ability to handle nonlinear relationships within the data. To overcome these problems, we first use wavelet transform with its multi-scale analysis capability to extract multi-scale features from SERS data while minimizing information loss compared to traditional methods. Moreover, deep learning is employed for classification, leveraging its strong nonlinear processing capability to enhance accuracy. In addition, the chosen neural network incorporates a data augmentation method, thereby enriching our training dataset and mitigating the risk of overfitting. Moreover, we acknowledge the significance of selecting the appropriate wavelet basis functions in SERS data processing, prompting us to choose six specific ones for comparison. We employ SERS data from serum samples obtained from both liver cancer patients and healthy volunteers to train and test our classification model, enabling us to assess its performance. Our experimental results demonstrate that our method achieved outstanding and healthy volunteers to train and test our classification model, enabling us to assess its performance. Our experimental results demonstrate that our method achieved outstanding performance, surpassing the majority of multivariate statistical analysis and traditional machine learning classification methods, with an accuracy of 99.38 %, a sensitivity of 99.8 %, and a specificity of 97.0 %. These results indicate that the combination of SERS, wavelet transform, and deep learning has the potential to function as a non-invasive tool for the rapid detection of liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姽婳wy发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
sunrise完成签到,获得积分10
3秒前
SciGPT应助慕昊强采纳,获得10
3秒前
4秒前
dellsni发布了新的文献求助10
4秒前
rerwre完成签到,获得积分10
4秒前
caiqinghua888888完成签到,获得积分10
5秒前
sunrise发布了新的文献求助10
5秒前
7秒前
丘比特应助sky采纳,获得10
7秒前
喜喜完成签到,获得积分20
9秒前
9秒前
liguanyu1078发布了新的文献求助10
9秒前
liguanyu1078发布了新的文献求助10
9秒前
可爱的函函应助Sun采纳,获得10
10秒前
liguanyu1078发布了新的文献求助10
11秒前
12秒前
岁岁平安发布了新的文献求助10
13秒前
善学以致用应助无喱酱采纳,获得10
14秒前
鲤鱼谷秋发布了新的文献求助30
15秒前
jike完成签到 ,获得积分10
15秒前
完美世界应助Eternitymaria采纳,获得10
15秒前
Owen应助喜喜采纳,获得10
16秒前
莫莫莫莫几完成签到,获得积分10
16秒前
在水一方应助安笙凉城采纳,获得10
19秒前
fufufu123完成签到,获得积分10
19秒前
活力小鸽子完成签到,获得积分10
22秒前
壮观的灵凡完成签到,获得积分20
25秒前
peikyang完成签到,获得积分10
25秒前
guo完成签到,获得积分0
25秒前
王梦凡发布了新的文献求助20
26秒前
纪贝贝完成签到,获得积分10
26秒前
甜蜜夏青完成签到,获得积分10
26秒前
young应助TianFuAI采纳,获得10
27秒前
29秒前
29秒前
30秒前
聪明无敌小腚宝完成签到,获得积分10
31秒前
ps完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010813
求助须知:如何正确求助?哪些是违规求助? 3550492
关于积分的说明 11305855
捐赠科研通 3284855
什么是DOI,文献DOI怎么找? 1810889
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811505