Multi-scale representation of surface-enhanced Raman spectroscopy data for deep learning-based liver cancer detection

过度拟合 计算机科学 人工智能 机器学习 模式识别(心理学) 降维 表面增强拉曼光谱 小波 数据挖掘 人工神经网络 拉曼光谱 拉曼散射 光学 物理
作者
Yang Yang,Xingen Gao,Hongyi Zhang,Fei Chao,Huali Jiang,Junqi Huang,Juqiang Lin
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:308: 123764-123764 被引量:2
标识
DOI:10.1016/j.saa.2023.123764
摘要

The early detection of liver cancer greatly improves survival rates and allows for less invasive treatment options. As a non-invasive optical detection technique, Surface-Enhanced Raman Spectroscopy (SERS) has shown significant potential in early cancer detection, providing multiple advantages over conventional methods. The majority of existing cancer detection methods utilize multivariate statistical analysis to categorize SERS data. However, these methods are plagued by issues such as information loss during dimensionality reduction and inadequate ability to handle nonlinear relationships within the data. To overcome these problems, we first use wavelet transform with its multi-scale analysis capability to extract multi-scale features from SERS data while minimizing information loss compared to traditional methods. Moreover, deep learning is employed for classification, leveraging its strong nonlinear processing capability to enhance accuracy. In addition, the chosen neural network incorporates a data augmentation method, thereby enriching our training dataset and mitigating the risk of overfitting. Moreover, we acknowledge the significance of selecting the appropriate wavelet basis functions in SERS data processing, prompting us to choose six specific ones for comparison. We employ SERS data from serum samples obtained from both liver cancer patients and healthy volunteers to train and test our classification model, enabling us to assess its performance. Our experimental results demonstrate that our method achieved outstanding and healthy volunteers to train and test our classification model, enabling us to assess its performance. Our experimental results demonstrate that our method achieved outstanding performance, surpassing the majority of multivariate statistical analysis and traditional machine learning classification methods, with an accuracy of 99.38 %, a sensitivity of 99.8 %, and a specificity of 97.0 %. These results indicate that the combination of SERS, wavelet transform, and deep learning has the potential to function as a non-invasive tool for the rapid detection of liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯芹菜完成签到,获得积分10
刚刚
zzz发布了新的文献求助10
1秒前
SYanan完成签到 ,获得积分10
1秒前
猪肉超人菜婴蚊完成签到,获得积分10
3秒前
4秒前
科研通AI5应助辉hui采纳,获得10
5秒前
科研通AI5应助qi采纳,获得10
5秒前
5秒前
田様应助人之路采纳,获得10
6秒前
one完成签到 ,获得积分10
7秒前
打打应助小孙孙采纳,获得10
7秒前
DustRain发布了新的文献求助10
8秒前
尊敬雅容发布了新的文献求助60
8秒前
222完成签到,获得积分10
8秒前
都很难完成签到,获得积分20
8秒前
orixero应助美好蜻蜓采纳,获得10
9秒前
10秒前
11秒前
pluto应助Gleast采纳,获得20
11秒前
one发布了新的文献求助10
11秒前
12秒前
12秒前
14秒前
15秒前
爆米花应助星移采纳,获得10
15秒前
我是你爹发布了新的文献求助10
17秒前
taotao发布了新的文献求助10
18秒前
zhu发布了新的文献求助10
18秒前
舒适不平发布了新的文献求助10
19秒前
wanci应助xiaoxiao采纳,获得10
20秒前
22秒前
微笑的冰之完成签到,获得积分10
22秒前
nature24应助樂酉采纳,获得10
23秒前
我是你爹完成签到,获得积分10
23秒前
隐形曼青应助科研小白采纳,获得10
24秒前
25秒前
25秒前
xxxllllll发布了新的文献求助10
25秒前
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668076
求助须知:如何正确求助?哪些是违规求助? 3226524
关于积分的说明 9769880
捐赠科研通 2936484
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759677
科研通“疑难数据库(出版商)”最低求助积分说明 735474