Multi-scale representation of surface-enhanced Raman spectroscopy data for deep learning-based liver cancer detection

过度拟合 计算机科学 人工智能 机器学习 模式识别(心理学) 降维 表面增强拉曼光谱 小波 数据挖掘 人工神经网络 拉曼光谱 拉曼散射 光学 物理
作者
Yang Yang,Xingen Gao,Hongyi Zhang,Fei Chao,Huali Jiang,Junqi Huang,Juqiang Lin
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:308: 123764-123764
标识
DOI:10.1016/j.saa.2023.123764
摘要

The early detection of liver cancer greatly improves survival rates and allows for less invasive treatment options. As a non-invasive optical detection technique, Surface-Enhanced Raman Spectroscopy (SERS) has shown significant potential in early cancer detection, providing multiple advantages over conventional methods. The majority of existing cancer detection methods utilize multivariate statistical analysis to categorize SERS data. However, these methods are plagued by issues such as information loss during dimensionality reduction and inadequate ability to handle nonlinear relationships within the data. To overcome these problems, we first use wavelet transform with its multi-scale analysis capability to extract multi-scale features from SERS data while minimizing information loss compared to traditional methods. Moreover, deep learning is employed for classification, leveraging its strong nonlinear processing capability to enhance accuracy. In addition, the chosen neural network incorporates a data augmentation method, thereby enriching our training dataset and mitigating the risk of overfitting. Moreover, we acknowledge the significance of selecting the appropriate wavelet basis functions in SERS data processing, prompting us to choose six specific ones for comparison. We employ SERS data from serum samples obtained from both liver cancer patients and healthy volunteers to train and test our classification model, enabling us to assess its performance. Our experimental results demonstrate that our method achieved outstanding and healthy volunteers to train and test our classification model, enabling us to assess its performance. Our experimental results demonstrate that our method achieved outstanding performance, surpassing the majority of multivariate statistical analysis and traditional machine learning classification methods, with an accuracy of 99.38 %, a sensitivity of 99.8 %, and a specificity of 97.0 %. These results indicate that the combination of SERS, wavelet transform, and deep learning has the potential to function as a non-invasive tool for the rapid detection of liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助IAMXC采纳,获得10
1秒前
直率的冥发布了新的文献求助10
2秒前
哈哈哈完成签到,获得积分10
2秒前
3秒前
Sudon完成签到 ,获得积分10
7秒前
Nirvana发布了新的文献求助10
7秒前
yinshan完成签到 ,获得积分10
7秒前
CipherSage应助towanda采纳,获得10
7秒前
8秒前
yyds发布了新的文献求助30
9秒前
冰糖葫芦完成签到 ,获得积分10
9秒前
12秒前
LM完成签到,获得积分10
14秒前
wzs完成签到,获得积分10
14秒前
FashionBoy应助zjy采纳,获得10
15秒前
七月完成签到,获得积分10
16秒前
脑洞疼应助卡比兽采纳,获得10
16秒前
bkagyin应助huihuihui采纳,获得10
16秒前
JT1021O完成签到,获得积分10
17秒前
梨梨发布了新的文献求助10
18秒前
丫丫完成签到 ,获得积分10
18秒前
18秒前
完美世界应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
20秒前
21秒前
21秒前
23秒前
Hosea发布了新的文献求助10
23秒前
24秒前
25秒前
25秒前
25秒前
牛肉汉堡完成签到,获得积分10
25秒前
芒果布丁完成签到 ,获得积分10
26秒前
yyds发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148036
求助须知:如何正确求助?哪些是违规求助? 2799034
关于积分的说明 7833337
捐赠科研通 2456217
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628077
版权声明 601620