清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automating the Detection of IV Fluid Contamination Using Unsupervised Machine Learning

污染 工作流程 计算机科学 离群值 人工智能 公制(单位) 投影(关系代数) 机器学习 算法 数据库 生态学 运营管理 生物 经济
作者
Nicholas C. Spies,Zita Hubler,Vahid Azimi,Ray Zhang,Ronald Jackups,Ann M. Gronowski,Christopher W Farnsworth,Mark A. Zaydman
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:70 (2): 444-452 被引量:4
标识
DOI:10.1093/clinchem/hvad207
摘要

Abstract Background Intravenous (IV) fluid contamination is a common cause of preanalytical error that can delay or misguide treatment decisions, leading to patient harm. Current approaches for detecting contamination rely on delta checks, which require a prior result, or manual technologist intervention, which is inefficient and vulnerable to human error. Supervised machine learning may provide a means to detect contamination, but its implementation is hindered by its reliance on expert-labeled training data. An automated approach that is accurate, reproducible, and practical is needed. Methods A total of 25 747 291 basic metabolic panel (BMP) results from 312 721 patients were obtained from the laboratory information system (LIS). A Uniform Manifold Approximation and Projection (UMAP) model was trained and tested using a combination of real patient data and simulated IV fluid contamination. To provide an objective metric for classification, an “enrichment score” was derived and its performance assessed. Our current workflow was compared to UMAP predictions using expert chart review. Results UMAP embeddings from real patient results demonstrated outliers suspicious for IV fluid contamination when compared with the simulated contamination's embeddings. At a flag rate of 3 per 1000 results, the positive predictive value (PPV) was adjudicated to be 0.78 from 100 consecutive positive predictions. Of these, 58 were previously undetected by our current clinical workflows, with 49 BMPs displaying a total of 56 critical results. Conclusions Accurate and automatable detection of IV fluid contamination in BMP results is achievable without curating expertly labeled training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天123完成签到 ,获得积分10
2秒前
乔杰完成签到 ,获得积分10
10秒前
22秒前
25秒前
dyuguo3完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
28秒前
31秒前
41秒前
43秒前
困的晕福福完成签到 ,获得积分10
44秒前
Eins完成签到 ,获得积分10
51秒前
蝎子莱莱xth完成签到,获得积分10
58秒前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
freyaaaaa应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
Xixi完成签到 ,获得积分10
1分钟前
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
ceeray23发布了新的文献求助20
2分钟前
李健的小迷弟应助ceeray23采纳,获得20
2分钟前
2分钟前
希望天下0贩的0应助liwen采纳,获得10
2分钟前
2分钟前
klpkyx发布了新的文献求助10
2分钟前
klpkyx完成签到,获得积分10
3分钟前
3分钟前
liwen发布了新的文献求助10
3分钟前
DoctorTa发布了新的文献求助30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
DoctorTa完成签到,获得积分10
3分钟前
juan完成签到 ,获得积分0
3分钟前
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554977
求助须知:如何正确求助?哪些是违规求助? 4639572
关于积分的说明 14656373
捐赠科研通 4581518
什么是DOI,文献DOI怎么找? 2512837
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503