Automating the Detection of IV Fluid Contamination Using Unsupervised Machine Learning

污染 工作流程 计算机科学 离群值 人工智能 公制(单位) 投影(关系代数) 机器学习 算法 数据库 生态学 运营管理 经济 生物
作者
Nicholas C. Spies,Zita Hubler,Vahid Azimi,Ray Zhang,Ronald Jackups,Ann M. Gronowski,Christopher W Farnsworth,Mark A. Zaydman
出处
期刊:Clinical Chemistry [American Association for Clinical Chemistry]
卷期号:70 (2): 444-452 被引量:4
标识
DOI:10.1093/clinchem/hvad207
摘要

Abstract Background Intravenous (IV) fluid contamination is a common cause of preanalytical error that can delay or misguide treatment decisions, leading to patient harm. Current approaches for detecting contamination rely on delta checks, which require a prior result, or manual technologist intervention, which is inefficient and vulnerable to human error. Supervised machine learning may provide a means to detect contamination, but its implementation is hindered by its reliance on expert-labeled training data. An automated approach that is accurate, reproducible, and practical is needed. Methods A total of 25 747 291 basic metabolic panel (BMP) results from 312 721 patients were obtained from the laboratory information system (LIS). A Uniform Manifold Approximation and Projection (UMAP) model was trained and tested using a combination of real patient data and simulated IV fluid contamination. To provide an objective metric for classification, an “enrichment score” was derived and its performance assessed. Our current workflow was compared to UMAP predictions using expert chart review. Results UMAP embeddings from real patient results demonstrated outliers suspicious for IV fluid contamination when compared with the simulated contamination's embeddings. At a flag rate of 3 per 1000 results, the positive predictive value (PPV) was adjudicated to be 0.78 from 100 consecutive positive predictions. Of these, 58 were previously undetected by our current clinical workflows, with 49 BMPs displaying a total of 56 critical results. Conclusions Accurate and automatable detection of IV fluid contamination in BMP results is achievable without curating expertly labeled training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwwtw完成签到,获得积分10
刚刚
卞卞发布了新的文献求助10
1秒前
1秒前
开朗寇发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
FashionBoy应助正直凌文采纳,获得10
3秒前
3秒前
李健应助aaaa采纳,获得10
4秒前
李子完成签到 ,获得积分10
5秒前
小东发布了新的文献求助10
6秒前
7秒前
水静嫡发布了新的文献求助30
8秒前
zky0216发布了新的文献求助10
8秒前
9秒前
开朗寇完成签到,获得积分10
9秒前
IvanMcRae应助LaTeXer采纳,获得10
12秒前
云月林生发布了新的文献求助10
12秒前
缓慢的开山完成签到 ,获得积分10
13秒前
13秒前
Hello应助zky0216采纳,获得30
14秒前
所所应助以泪洗面奶采纳,获得10
15秒前
大龙哥886发布了新的文献求助10
16秒前
17秒前
17秒前
幽默果汁发布了新的文献求助10
19秒前
20秒前
zky0216完成签到,获得积分10
22秒前
李健的小迷弟应助羊羊羊采纳,获得10
22秒前
百香果完成签到,获得积分10
22秒前
lijall完成签到,获得积分10
22秒前
负责音响完成签到 ,获得积分10
22秒前
大黄日记本完成签到,获得积分20
22秒前
23秒前
23秒前
史前巨怪完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032