Automating the Detection of IV Fluid Contamination Using Unsupervised Machine Learning

污染 工作流程 计算机科学 离群值 人工智能 公制(单位) 投影(关系代数) 机器学习 算法 数据库 生态学 运营管理 生物 经济
作者
Nicholas C. Spies,Zita Hubler,Vahid Azimi,Ray Zhang,Ronald Jackups,Ann M. Gronowski,Christopher W Farnsworth,Mark A. Zaydman
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:70 (2): 444-452 被引量:4
标识
DOI:10.1093/clinchem/hvad207
摘要

Abstract Background Intravenous (IV) fluid contamination is a common cause of preanalytical error that can delay or misguide treatment decisions, leading to patient harm. Current approaches for detecting contamination rely on delta checks, which require a prior result, or manual technologist intervention, which is inefficient and vulnerable to human error. Supervised machine learning may provide a means to detect contamination, but its implementation is hindered by its reliance on expert-labeled training data. An automated approach that is accurate, reproducible, and practical is needed. Methods A total of 25 747 291 basic metabolic panel (BMP) results from 312 721 patients were obtained from the laboratory information system (LIS). A Uniform Manifold Approximation and Projection (UMAP) model was trained and tested using a combination of real patient data and simulated IV fluid contamination. To provide an objective metric for classification, an “enrichment score” was derived and its performance assessed. Our current workflow was compared to UMAP predictions using expert chart review. Results UMAP embeddings from real patient results demonstrated outliers suspicious for IV fluid contamination when compared with the simulated contamination's embeddings. At a flag rate of 3 per 1000 results, the positive predictive value (PPV) was adjudicated to be 0.78 from 100 consecutive positive predictions. Of these, 58 were previously undetected by our current clinical workflows, with 49 BMPs displaying a total of 56 critical results. Conclusions Accurate and automatable detection of IV fluid contamination in BMP results is achievable without curating expertly labeled training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grow完成签到,获得积分10
1秒前
ShowMaker应助世佳何采纳,获得30
1秒前
wanci应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
浅尝离白应助科研通管家采纳,获得30
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
lvxsit完成签到,获得积分10
4秒前
wanci应助Qi采纳,获得10
5秒前
5秒前
5秒前
zz完成签到 ,获得积分10
5秒前
深情安青应助科研小白采纳,获得10
6秒前
Singularity应助胺碘酮采纳,获得20
6秒前
8秒前
夏日生生豪完成签到 ,获得积分10
9秒前
9秒前
烟花应助学术安陵容采纳,获得10
10秒前
自由青柏发布了新的文献求助10
11秒前
蛋黄派完成签到,获得积分10
11秒前
xiaotu完成签到,获得积分10
11秒前
隐形曼青应助健忘的南风采纳,获得10
13秒前
godsence发布了新的文献求助10
13秒前
星星草发布了新的文献求助10
13秒前
独钓者梁发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
17秒前
星辰大海应助独孤刘采纳,获得10
19秒前
英俊的铭应助godsence采纳,获得10
19秒前
lzy完成签到 ,获得积分10
19秒前
笨笨从凝发布了新的文献求助10
20秒前
李大伟完成签到,获得积分10
21秒前
研友_85rWQL发布了新的文献求助10
21秒前
宸1发布了新的文献求助10
21秒前
22秒前
大宝发布了新的文献求助10
22秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150257
求助须知:如何正确求助?哪些是违规求助? 2801405
关于积分的说明 7844390
捐赠科研通 2458892
什么是DOI,文献DOI怎么找? 1308773
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721