Cross-user Electromyography Pattern Recognition Based on A Novel Spatial-temporal Graph Convolutional Network

计算机科学 肌电图 模式识别(心理学) 图形 卷积神经网络 人工智能 物理医学与康复 医学 理论计算机科学
作者
Mengjuan Xu,Xiang Chen,Yuwen Ruan,Xu Zhang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 72-82
标识
DOI:10.1109/tnsre.2023.3342050
摘要

With the goal of promoting the development of myoelectric control technology, this paper focuses on exploring graph neural network (GNN) based robust electromyography (EMG) pattern recognition solutions. Given that high-density surface EMG (HD-sEMG) signal contains rich temporal and spatial information, the multi-view spatial-temporal graph convolutional network (MSTGCN)is adopted as the basic classifier, and a feature extraction convolutional neural network (CNN) module is designed and integrated into MSTGCN to generate a new model called CNN-MSTGCN. The EMG pattern recognition experiments are conducted on HD-sEMG data of 17 gestures from 11 subjects. The ablation experiments show that each functional module of the proposed CNN-MSTGCN network has played a more or less positive role in improving the performance of EMG pattern recognition. The user-independent recognition experiments and the transfer learning-based cross-user recognition experiments verify the advantages of the proposed CNN-MSTGCN network in improving recognition rate and reducing user training burden. In the user-independent recognition experiments, CNN-MSTGCN achieves the recognition rate of 68%, which is significantly better than those obtained by residual network-50 (ResNet50, 47.5%, p < 0.001) and long-short-term-memory (LSTM, 57.1%, p=0.045). In the transfer learning-based cross-user recognition experiments, TL-CMSTGCN achieves an impressive recognition rate of 92.3%, which is significantly superior to both TL-ResNet50 (84.6%, p = 0.003) and TL-LSTM (85.3%, p = 0.008). The research results of this paper indicate that GNN has certain advantages in overcoming the impact of individual differences, and can be used to provide possible solutions for achieving robust EMG pattern recognition technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一诺相许完成签到 ,获得积分10
刚刚
pitto发布了新的文献求助10
1秒前
CipherSage应助龙仔采纳,获得10
1秒前
脑洞疼应助无畏采纳,获得10
2秒前
我先睡了应助peaceone采纳,获得10
4秒前
xue完成签到,获得积分10
5秒前
galaxy发布了新的文献求助30
5秒前
6秒前
schnappi完成签到,获得积分10
7秒前
7秒前
青柠大大完成签到,获得积分10
8秒前
JamesPei应助远芳afar采纳,获得10
9秒前
aaaa发布了新的文献求助20
9秒前
10秒前
无花果应助summer采纳,获得10
10秒前
11秒前
XHW发布了新的文献求助10
11秒前
mol完成签到,获得积分10
13秒前
MOMO发布了新的文献求助10
13秒前
15秒前
我是老大应助hmbb采纳,获得10
15秒前
15秒前
科研通AI2S应助蓝月半采纳,获得10
15秒前
严惜完成签到,获得积分10
15秒前
江幻天发布了新的文献求助10
16秒前
星辰大海应助nako7575采纳,获得10
16秒前
114514完成签到 ,获得积分20
16秒前
17秒前
17秒前
17秒前
20秒前
XHW完成签到,获得积分10
20秒前
20秒前
远芳afar发布了新的文献求助10
20秒前
20秒前
21秒前
彭静琳发布了新的文献求助30
23秒前
23秒前
啦啦累发布了新的文献求助10
25秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425