Cross-user Electromyography Pattern Recognition Based on A Novel Spatial-temporal Graph Convolutional Network

计算机科学 肌电图 模式识别(心理学) 图形 卷积神经网络 人工智能 物理医学与康复 医学 理论计算机科学
作者
Mengjuan Xu,Xiang Chen,Yuwen Ruan,Xu Zhang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 72-82
标识
DOI:10.1109/tnsre.2023.3342050
摘要

With the goal of promoting the development of myoelectric control technology, this paper focuses on exploring graph neural network (GNN) based robust electromyography (EMG) pattern recognition solutions. Given that high-density surface EMG (HD-sEMG) signal contains rich temporal and spatial information, the multi-view spatial-temporal graph convolutional network (MSTGCN)is adopted as the basic classifier, and a feature extraction convolutional neural network (CNN) module is designed and integrated into MSTGCN to generate a new model called CNN-MSTGCN. The EMG pattern recognition experiments are conducted on HD-sEMG data of 17 gestures from 11 subjects. The ablation experiments show that each functional module of the proposed CNN-MSTGCN network has played a more or less positive role in improving the performance of EMG pattern recognition. The user-independent recognition experiments and the transfer learning-based cross-user recognition experiments verify the advantages of the proposed CNN-MSTGCN network in improving recognition rate and reducing user training burden. In the user-independent recognition experiments, CNN-MSTGCN achieves the recognition rate of 68%, which is significantly better than those obtained by residual network-50 (ResNet50, 47.5%, p < 0.001) and long-short-term-memory (LSTM, 57.1%, p=0.045). In the transfer learning-based cross-user recognition experiments, TL-CMSTGCN achieves an impressive recognition rate of 92.3%, which is significantly superior to both TL-ResNet50 (84.6%, p = 0.003) and TL-LSTM (85.3%, p = 0.008). The research results of this paper indicate that GNN has certain advantages in overcoming the impact of individual differences, and can be used to provide possible solutions for achieving robust EMG pattern recognition technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大方大船完成签到,获得积分10
1秒前
Sigyn完成签到,获得积分10
1秒前
顺利琦发布了新的文献求助10
1秒前
1秒前
自由完成签到,获得积分20
2秒前
Volta_zz完成签到,获得积分10
2秒前
2秒前
欣欣子完成签到,获得积分10
3秒前
4秒前
111完成签到 ,获得积分10
4秒前
4秒前
柔弱煎饼发布了新的文献求助30
5秒前
5秒前
曹梦梦完成签到,获得积分10
5秒前
5秒前
风趣霆完成签到,获得积分10
6秒前
6秒前
6秒前
小二郎应助Sigyn采纳,获得10
6秒前
科研通AI5应助不对也没错采纳,获得10
6秒前
lyn完成签到,获得积分20
6秒前
7秒前
隐形觅翠完成签到,获得积分10
7秒前
刘鹏宇发布了新的文献求助10
7秒前
lizh187完成签到 ,获得积分10
7秒前
北城完成签到,获得积分10
7秒前
自由发布了新的文献求助10
8秒前
8秒前
小豆芽儿发布了新的文献求助10
8秒前
WNL发布了新的文献求助10
9秒前
Ngu完成签到,获得积分10
9秒前
科研通AI5应助冷艳后妈采纳,获得10
9秒前
陶1122发布了新的文献求助10
9秒前
万能图书馆应助乐观期待采纳,获得30
9秒前
krystal完成签到,获得积分10
9秒前
学术大小拿完成签到,获得积分10
10秒前
迪迦完成签到,获得积分10
10秒前
11秒前
乖乖发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678