Exploring the Potential of Carbonized Nano-Si within G@C@Si Anodes for Lithium-Ion Rechargeable Batteries

材料科学 锂(药物) 锂离子电池的纳米结构 阳极 碳化 离子 纳米- 电极 纳米技术 复合材料 扫描电子显微镜 有机化学 医学 内分泌学 物理化学 化学
作者
Reddyprakash Maddipatla,Chadrasekhar Loka,Kee‐Sun Lee
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (50): 58437-58450 被引量:8
标识
DOI:10.1021/acsami.3c14115
摘要

This study presents the synthesis, characterization, and electrochemical performance evaluation of carbon@silicon (C@Si) and graphite@carbon@silicon (G@C@Si) nanocomposites as potential anode materials for lithium-ion batteries (LIBs). Employing a combination of mechanical milling and carbonization using citric acid, we developed nanocomposites exhibiting unique core-shell structures, as confirmed by detailed SEM and TEM analysis. The G@C@Si nanocomposite displayed superior electrochemical performance, delivering an initial discharge capacity of 1724 mAh g-1 and a high initial Coulombic efficiency of 87.37%. The nanocomposite demonstrated remarkable cycling durability with a discharge capacity of 1248 mAh g-1 over 200 cycles and an average Coulombic efficiency of 99.1% and high-capacity retention of about 83%. Notably, a high capacity of 1325 mAh g-1 was observed at a high 3C rate, and the electrode showed excellent resilience by rapidly recovering to a discharge capacity of 1637 mAh g-1 when the C rate was reduced back to 0.5C. Electrochemical impedance spectra revealed a reduced charge transfer resistance of approximately 43 Ω in the G@C@Si nanocomposite as compared to that of C@Si (∼56 Ω) and nano-Si (105 Ω), indicating enhanced lithium-ion diffusion due to the integration of graphite. Postcycle electrode analysis revealed excellent structural integrity, with minimized volume changes in both C@Si and G@C@Si. XPS studies revealed a thinner SEI layer formation in the G@C@Si electrode compared to C@Si. The C@Si core-shell formation through the citric acid treatment of nano-Si and integration of graphite by mechanical milling significantly boosts the electrochemical performance of the G@C@Si nanocomposite. These findings suggest that the G@C@Si nanocomposite offers immense potential for utilization in high-capacity and high-efficiency LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一杯月光完成签到,获得积分10
1秒前
皮卡皮卡完成签到,获得积分10
1秒前
狂野宛丝发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
dffdd发布了新的文献求助10
3秒前
4秒前
小蘑菇应助包容的剑采纳,获得10
4秒前
巫马发布了新的文献求助10
4秒前
23完成签到,获得积分10
4秒前
meetland完成签到 ,获得积分10
5秒前
搜集达人应助皮卡皮卡采纳,获得10
6秒前
谦让寄容发布了新的文献求助10
6秒前
6秒前
大模型应助power采纳,获得10
8秒前
liz发布了新的文献求助10
8秒前
瘦瘦滢完成签到,获得积分20
8秒前
lina完成签到 ,获得积分10
8秒前
8秒前
我是你爹发布了新的文献求助10
8秒前
粱老黑发布了新的文献求助10
9秒前
10秒前
打打应助橙子采纳,获得10
10秒前
llll完成签到 ,获得积分10
11秒前
个性乐荷发布了新的文献求助10
11秒前
开心乐双发布了新的文献求助10
12秒前
12秒前
巫马完成签到,获得积分10
13秒前
海鲜完成签到,获得积分10
13秒前
瘦瘦滢发布了新的文献求助50
14秒前
夏林完成签到,获得积分10
14秒前
百丈楼阁情悫悫完成签到,获得积分10
15秒前
咕_发布了新的文献求助10
17秒前
19秒前
天地不语发布了新的文献求助10
20秒前
ry发布了新的文献求助10
20秒前
cola完成签到 ,获得积分10
20秒前
奶牛猫完成签到 ,获得积分10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551943
求助须知:如何正确求助?哪些是违规求助? 3128370
关于积分的说明 9377451
捐赠科研通 2827382
什么是DOI,文献DOI怎么找? 1554345
邀请新用户注册赠送积分活动 725429
科研通“疑难数据库(出版商)”最低求助积分说明 714842