Severity-stratification of interstitial lung disease by deep learning enabled assessment and quantification of lesion indicators from HRCT images

医学 列线图 间质性肺病 多元统计 放射科 阶段(地层学) 多元分析 卷积神经网络 接收机工作特性 内科学 人工智能 计算机科学 机器学习 生物 古生物学
作者
Yexin Lai,Xueyu Liu,Fan Fan Hou,Zhiyong Han,E Linning,Ningling Su,Dianrong Du,Zhichong Wang,Wen Zheng,Yongfei Wu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (2): 323-338 被引量:1
标识
DOI:10.3233/xst-230218
摘要

BACKGROUND: Interstitial lung disease (ILD) represents a group of chronic heterogeneous diseases, and current clinical practice in assessment of ILD severity and progression mainly rely on the radiologist-based visual screening, which greatly restricts the accuracy of disease assessment due to the high inter- and intra-subjective observer variability. OBJECTIVE: To solve these problems, in this work, we propose a deep learning driven framework that can assess and quantify lesion indicators and outcome the prediction of severity of ILD. METHODS: In detail, we first present a convolutional neural network that can segment and quantify five types of lesions including HC, RO, GGO, CONS, and EMPH from HRCT of ILD patients, and then we conduct quantitative analysis to select the features related to ILD based on the segmented lesions and clinical data. Finally, a multivariate prediction model based on nomogram to predict the severity of ILD is established by combining multiple typical lesions. RESULTS: Experimental results showed that three lesions of HC, RO, and GGO could accurately predict ILD staging independently or combined with other HRCT features. Based on the HRCT, the used multivariate model can achieve the highest AUC value of 0.755 for HC, and the lowest AUC value of 0.701 for RO in stage I, and obtain the highest AUC value of 0.803 for HC, and the lowest AUC value of 0.733 for RO in stage II. Additionally, our ILD scoring model could achieve an average accuracy of 0.812 (0.736 - 0.888) in predicting the severity of ILD via cross-validation. CONCLUSIONS: In summary, our proposed method provides effective segmentation of ILD lesions by a comprehensive deep-learning approach and confirms its potential effectiveness in improving diagnostic accuracy for clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助caixiayin采纳,获得10
刚刚
ch完成签到,获得积分10
刚刚
青木蓝完成签到,获得积分10
刚刚
在水一方应助shinnosuke采纳,获得10
1秒前
火星上的汉堡完成签到,获得积分10
1秒前
1秒前
灯灯发布了新的文献求助30
2秒前
bingchem完成签到,获得积分10
2秒前
li发布了新的文献求助10
2秒前
万能图书馆应助nbnmbm采纳,获得30
2秒前
寻风完成签到,获得积分10
3秒前
文静煜城完成签到,获得积分10
3秒前
Lucas应助匿名采纳,获得30
3秒前
小二郎应助时尚俊驰采纳,获得10
3秒前
3秒前
琦琦完成签到,获得积分20
3秒前
乐友刘关注了科研通微信公众号
4秒前
4秒前
qyy完成签到,获得积分10
5秒前
yurh完成签到,获得积分10
5秒前
5秒前
LArry发布了新的文献求助10
5秒前
7秒前
符严青完成签到,获得积分10
7秒前
高兴微笑完成签到,获得积分10
7秒前
li完成签到,获得积分10
8秒前
天真博超发布了新的文献求助10
8秒前
9秒前
NIER发布了新的文献求助20
9秒前
pantio发布了新的文献求助10
9秒前
zy完成签到,获得积分10
9秒前
Gzl发布了新的文献求助10
10秒前
小马甲应助心灵美绝施采纳,获得10
10秒前
asdfg发布了新的文献求助10
10秒前
11秒前
丰那个丰发布了新的文献求助10
12秒前
大个应助小猫宝采纳,获得10
12秒前
12秒前
略略略完成签到,获得积分10
12秒前
汉堡包应助EED采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653