Severity-stratification of interstitial lung disease by deep learning enabled assessment and quantification of lesion indicators from HRCT images

医学 列线图 间质性肺病 多元统计 放射科 阶段(地层学) 多元分析 卷积神经网络 接收机工作特性 内科学 人工智能 计算机科学 机器学习 生物 古生物学
作者
Yexin Lai,Xueyu Liu,Fan Fan Hou,Zhiyong Han,E Linning,Ningling Su,Dianrong Du,Zhichong Wang,Wen Zheng,Yongfei Wu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (2): 323-338 被引量:1
标识
DOI:10.3233/xst-230218
摘要

BACKGROUND: Interstitial lung disease (ILD) represents a group of chronic heterogeneous diseases, and current clinical practice in assessment of ILD severity and progression mainly rely on the radiologist-based visual screening, which greatly restricts the accuracy of disease assessment due to the high inter- and intra-subjective observer variability. OBJECTIVE: To solve these problems, in this work, we propose a deep learning driven framework that can assess and quantify lesion indicators and outcome the prediction of severity of ILD. METHODS: In detail, we first present a convolutional neural network that can segment and quantify five types of lesions including HC, RO, GGO, CONS, and EMPH from HRCT of ILD patients, and then we conduct quantitative analysis to select the features related to ILD based on the segmented lesions and clinical data. Finally, a multivariate prediction model based on nomogram to predict the severity of ILD is established by combining multiple typical lesions. RESULTS: Experimental results showed that three lesions of HC, RO, and GGO could accurately predict ILD staging independently or combined with other HRCT features. Based on the HRCT, the used multivariate model can achieve the highest AUC value of 0.755 for HC, and the lowest AUC value of 0.701 for RO in stage I, and obtain the highest AUC value of 0.803 for HC, and the lowest AUC value of 0.733 for RO in stage II. Additionally, our ILD scoring model could achieve an average accuracy of 0.812 (0.736 - 0.888) in predicting the severity of ILD via cross-validation. CONCLUSIONS: In summary, our proposed method provides effective segmentation of ILD lesions by a comprehensive deep-learning approach and confirms its potential effectiveness in improving diagnostic accuracy for clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空豁举报内向小熊猫求助涉嫌违规
刚刚
奋斗土豆完成签到 ,获得积分10
刚刚
1秒前
花椒泡茶完成签到 ,获得积分10
2秒前
xyx945完成签到,获得积分10
3秒前
小雨发布了新的文献求助10
5秒前
我是老大应助梁燕回采纳,获得10
5秒前
Kiki发布了新的文献求助10
5秒前
7秒前
7秒前
小二郎应助an采纳,获得10
7秒前
思源应助仲大船采纳,获得10
9秒前
1128完成签到,获得积分20
10秒前
泠泠泠萘完成签到,获得积分10
10秒前
CodeCraft应助无非一念采纳,获得10
10秒前
11秒前
12秒前
桐桐应助ycy采纳,获得10
12秒前
慕青应助Surge采纳,获得10
12秒前
Jasper应助无心的仙人掌采纳,获得10
13秒前
周鑫硕关注了科研通微信公众号
13秒前
JaneChen完成签到,获得积分10
13秒前
白一寒完成签到,获得积分10
13秒前
不安青牛应助haoyooo采纳,获得10
14秒前
14秒前
打打应助葫芦家二娃采纳,获得10
14秒前
Lis完成签到,获得积分10
15秒前
洋葱完成签到,获得积分10
16秒前
冉冉完成签到,获得积分10
16秒前
纯真的莫茗完成签到,获得积分10
16秒前
安静诗霜完成签到 ,获得积分10
17秒前
Asma_2104发布了新的文献求助10
17秒前
小雨完成签到,获得积分10
17秒前
uu完成签到,获得积分20
17秒前
学习完成签到 ,获得积分10
17秒前
爱科研的小虞完成签到 ,获得积分10
18秒前
微笑的鱼关注了科研通微信公众号
18秒前
19秒前
清脆代桃发布了新的文献求助10
19秒前
五五我完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558868
求助须知:如何正确求助?哪些是违规求助? 3985681
关于积分的说明 12339795
捐赠科研通 3656197
什么是DOI,文献DOI怎么找? 2014213
邀请新用户注册赠送积分活动 1049037
科研通“疑难数据库(出版商)”最低求助积分说明 937443