Severity-stratification of interstitial lung disease by deep learning enabled assessment and quantification of lesion indicators from HRCT images

医学 列线图 间质性肺病 多元统计 放射科 阶段(地层学) 多元分析 卷积神经网络 接收机工作特性 内科学 人工智能 计算机科学 机器学习 生物 古生物学
作者
Yexin Lai,Xueyu Liu,Fan Fan Hou,Zhiyong Han,E Linning,Ningling Su,Dianrong Du,Zhichong Wang,Wen Zheng,Yongfei Wu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (2): 323-338 被引量:1
标识
DOI:10.3233/xst-230218
摘要

BACKGROUND: Interstitial lung disease (ILD) represents a group of chronic heterogeneous diseases, and current clinical practice in assessment of ILD severity and progression mainly rely on the radiologist-based visual screening, which greatly restricts the accuracy of disease assessment due to the high inter- and intra-subjective observer variability. OBJECTIVE: To solve these problems, in this work, we propose a deep learning driven framework that can assess and quantify lesion indicators and outcome the prediction of severity of ILD. METHODS: In detail, we first present a convolutional neural network that can segment and quantify five types of lesions including HC, RO, GGO, CONS, and EMPH from HRCT of ILD patients, and then we conduct quantitative analysis to select the features related to ILD based on the segmented lesions and clinical data. Finally, a multivariate prediction model based on nomogram to predict the severity of ILD is established by combining multiple typical lesions. RESULTS: Experimental results showed that three lesions of HC, RO, and GGO could accurately predict ILD staging independently or combined with other HRCT features. Based on the HRCT, the used multivariate model can achieve the highest AUC value of 0.755 for HC, and the lowest AUC value of 0.701 for RO in stage I, and obtain the highest AUC value of 0.803 for HC, and the lowest AUC value of 0.733 for RO in stage II. Additionally, our ILD scoring model could achieve an average accuracy of 0.812 (0.736 - 0.888) in predicting the severity of ILD via cross-validation. CONCLUSIONS: In summary, our proposed method provides effective segmentation of ILD lesions by a comprehensive deep-learning approach and confirms its potential effectiveness in improving diagnostic accuracy for clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gene发布了新的文献求助10
刚刚
wys2493发布了新的文献求助10
1秒前
高大的储发布了新的文献求助10
1秒前
2秒前
dubo666给dubo666的求助进行了留言
2秒前
3秒前
3秒前
4秒前
4秒前
狂野的筝完成签到 ,获得积分10
5秒前
5秒前
婷刘完成签到,获得积分10
6秒前
6秒前
负责紊完成签到,获得积分10
6秒前
磊磊猪完成签到,获得积分10
6秒前
hmy发布了新的文献求助10
6秒前
hooyi完成签到,获得积分20
6秒前
知鸢完成签到,获得积分10
7秒前
小王完成签到 ,获得积分10
7秒前
鲤鱼山人完成签到 ,获得积分10
7秒前
小次之山完成签到,获得积分10
7秒前
浮游应助迷失沉寂采纳,获得10
8秒前
kook发布了新的文献求助10
8秒前
wys2493完成签到,获得积分10
8秒前
6666应助Jenkin采纳,获得10
8秒前
小新完成签到,获得积分0
9秒前
1661321476发布了新的文献求助50
9秒前
金玉完成签到,获得积分10
9秒前
9秒前
hooyi发布了新的文献求助10
9秒前
pengpengpeng完成签到,获得积分10
9秒前
9秒前
9秒前
土豆泥拉拉完成签到,获得积分10
10秒前
动听的巧曼给量子星尘的求助进行了留言
10秒前
十有五完成签到,获得积分10
10秒前
10秒前
石石刘完成签到 ,获得积分10
10秒前
杜嘟嘟完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326643
求助须知:如何正确求助?哪些是违规求助? 4466789
关于积分的说明 13898695
捐赠科研通 4359245
什么是DOI,文献DOI怎么找? 2394512
邀请新用户注册赠送积分活动 1388021
关于科研通互助平台的介绍 1358868