Severity-stratification of interstitial lung disease by deep learning enabled assessment and quantification of lesion indicators from HRCT images

医学 列线图 间质性肺病 多元统计 放射科 阶段(地层学) 多元分析 卷积神经网络 接收机工作特性 内科学 人工智能 计算机科学 机器学习 生物 古生物学
作者
Yexin Lai,Xueyu Liu,Fan Fan Hou,Zhiyong Han,E Linning,Ningling Su,Dianrong Du,Zhichong Wang,Wen Zheng,Yongfei Wu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (2): 323-338 被引量:1
标识
DOI:10.3233/xst-230218
摘要

BACKGROUND: Interstitial lung disease (ILD) represents a group of chronic heterogeneous diseases, and current clinical practice in assessment of ILD severity and progression mainly rely on the radiologist-based visual screening, which greatly restricts the accuracy of disease assessment due to the high inter- and intra-subjective observer variability. OBJECTIVE: To solve these problems, in this work, we propose a deep learning driven framework that can assess and quantify lesion indicators and outcome the prediction of severity of ILD. METHODS: In detail, we first present a convolutional neural network that can segment and quantify five types of lesions including HC, RO, GGO, CONS, and EMPH from HRCT of ILD patients, and then we conduct quantitative analysis to select the features related to ILD based on the segmented lesions and clinical data. Finally, a multivariate prediction model based on nomogram to predict the severity of ILD is established by combining multiple typical lesions. RESULTS: Experimental results showed that three lesions of HC, RO, and GGO could accurately predict ILD staging independently or combined with other HRCT features. Based on the HRCT, the used multivariate model can achieve the highest AUC value of 0.755 for HC, and the lowest AUC value of 0.701 for RO in stage I, and obtain the highest AUC value of 0.803 for HC, and the lowest AUC value of 0.733 for RO in stage II. Additionally, our ILD scoring model could achieve an average accuracy of 0.812 (0.736 - 0.888) in predicting the severity of ILD via cross-validation. CONCLUSIONS: In summary, our proposed method provides effective segmentation of ILD lesions by a comprehensive deep-learning approach and confirms its potential effectiveness in improving diagnostic accuracy for clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll发布了新的文献求助10
1秒前
1秒前
笨笨梦寒关注了科研通微信公众号
1秒前
MM完成签到,获得积分10
2秒前
煲煲煲仔饭完成签到 ,获得积分10
2秒前
煲煲煲仔饭完成签到 ,获得积分10
2秒前
火羊宝完成签到 ,获得积分10
2秒前
455完成签到,获得积分10
4秒前
cis2014完成签到,获得积分10
4秒前
嘻嘻完成签到,获得积分10
5秒前
athena完成签到,获得积分10
5秒前
十七完成签到 ,获得积分10
6秒前
Zz完成签到,获得积分10
6秒前
清淮完成签到 ,获得积分10
6秒前
小新小新发布了新的文献求助10
7秒前
amault完成签到,获得积分10
8秒前
马小燕完成签到,获得积分10
8秒前
潇洒一曲完成签到,获得积分10
9秒前
笛九完成签到 ,获得积分10
10秒前
机智咖啡豆完成签到 ,获得积分10
12秒前
桐桐应助害羞的天真采纳,获得10
12秒前
浮游应助哭泣的皮皮虾采纳,获得10
12秒前
英姑应助风清扬采纳,获得10
13秒前
hhhhxxxx完成签到,获得积分10
14秒前
jjj完成签到,获得积分10
14秒前
15秒前
Akim应助向上采纳,获得10
16秒前
辛勤香岚完成签到,获得积分10
17秒前
yoyo完成签到,获得积分10
18秒前
boxi完成签到,获得积分10
19秒前
chaos完成签到 ,获得积分10
19秒前
霍巧凡发布了新的文献求助10
20秒前
22秒前
田瑜完成签到,获得积分10
22秒前
ll发布了新的文献求助10
23秒前
受伤的安雁完成签到,获得积分10
23秒前
24秒前
希望天下0贩的0应助别摆采纳,获得10
25秒前
虚幻的涵柏完成签到,获得积分10
25秒前
刘林发布了新的文献求助10
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695