Severity-stratification of interstitial lung disease by deep learning enabled assessment and quantification of lesion indicators from HRCT images

医学 列线图 间质性肺病 多元统计 放射科 阶段(地层学) 多元分析 卷积神经网络 接收机工作特性 内科学 人工智能 计算机科学 机器学习 生物 古生物学
作者
Yexin Lai,Xueyu Liu,Fan Fan Hou,Zhiyong Han,E Linning,Ningling Su,Dianrong Du,Zhichong Wang,Wen Zheng,Yongfei Wu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (2): 323-338 被引量:1
标识
DOI:10.3233/xst-230218
摘要

BACKGROUND: Interstitial lung disease (ILD) represents a group of chronic heterogeneous diseases, and current clinical practice in assessment of ILD severity and progression mainly rely on the radiologist-based visual screening, which greatly restricts the accuracy of disease assessment due to the high inter- and intra-subjective observer variability. OBJECTIVE: To solve these problems, in this work, we propose a deep learning driven framework that can assess and quantify lesion indicators and outcome the prediction of severity of ILD. METHODS: In detail, we first present a convolutional neural network that can segment and quantify five types of lesions including HC, RO, GGO, CONS, and EMPH from HRCT of ILD patients, and then we conduct quantitative analysis to select the features related to ILD based on the segmented lesions and clinical data. Finally, a multivariate prediction model based on nomogram to predict the severity of ILD is established by combining multiple typical lesions. RESULTS: Experimental results showed that three lesions of HC, RO, and GGO could accurately predict ILD staging independently or combined with other HRCT features. Based on the HRCT, the used multivariate model can achieve the highest AUC value of 0.755 for HC, and the lowest AUC value of 0.701 for RO in stage I, and obtain the highest AUC value of 0.803 for HC, and the lowest AUC value of 0.733 for RO in stage II. Additionally, our ILD scoring model could achieve an average accuracy of 0.812 (0.736 - 0.888) in predicting the severity of ILD via cross-validation. CONCLUSIONS: In summary, our proposed method provides effective segmentation of ILD lesions by a comprehensive deep-learning approach and confirms its potential effectiveness in improving diagnostic accuracy for clinicians.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幸福妙柏完成签到 ,获得积分10
1秒前
奉雨眠完成签到,获得积分10
1秒前
nkuhao完成签到,获得积分10
1秒前
前行的灿完成签到,获得积分10
2秒前
dscvigykyob完成签到,获得积分10
2秒前
张正完成签到,获得积分10
2秒前
brick2024完成签到,获得积分10
2秒前
多情的易绿完成签到,获得积分10
2秒前
美含完成签到,获得积分10
2秒前
怡然的复天完成签到,获得积分10
2秒前
3秒前
Jason完成签到,获得积分10
3秒前
赵念婉完成签到,获得积分10
4秒前
空城完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
guozizi发布了新的文献求助150
5秒前
Meyako完成签到 ,获得积分0
6秒前
前行的灿发布了新的文献求助20
6秒前
递年完成签到,获得积分10
7秒前
7秒前
欣慰的笑阳完成签到 ,获得积分10
8秒前
暮烟完成签到,获得积分10
8秒前
迷了路的猫完成签到,获得积分10
8秒前
白色的风车完成签到,获得积分10
9秒前
9秒前
万里完成签到,获得积分10
9秒前
9秒前
fang完成签到,获得积分10
10秒前
10秒前
hhh完成签到,获得积分10
11秒前
,。完成签到,获得积分10
11秒前
达雨发布了新的文献求助10
11秒前
领导范儿应助格林采纳,获得10
11秒前
Titi完成签到 ,获得积分10
11秒前
前行的灿发布了新的文献求助10
11秒前
Oil完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735