Severity-stratification of interstitial lung disease by deep learning enabled assessment and quantification of lesion indicators from HRCT images

医学 列线图 间质性肺病 多元统计 放射科 阶段(地层学) 多元分析 卷积神经网络 接收机工作特性 内科学 人工智能 计算机科学 机器学习 生物 古生物学
作者
Yexin Lai,Xueyu Liu,Fan Fan Hou,Zhiyong Han,E Linning,Ningling Su,Dianrong Du,Zhichong Wang,Wen Zheng,Yongfei Wu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (2): 323-338 被引量:1
标识
DOI:10.3233/xst-230218
摘要

BACKGROUND: Interstitial lung disease (ILD) represents a group of chronic heterogeneous diseases, and current clinical practice in assessment of ILD severity and progression mainly rely on the radiologist-based visual screening, which greatly restricts the accuracy of disease assessment due to the high inter- and intra-subjective observer variability. OBJECTIVE: To solve these problems, in this work, we propose a deep learning driven framework that can assess and quantify lesion indicators and outcome the prediction of severity of ILD. METHODS: In detail, we first present a convolutional neural network that can segment and quantify five types of lesions including HC, RO, GGO, CONS, and EMPH from HRCT of ILD patients, and then we conduct quantitative analysis to select the features related to ILD based on the segmented lesions and clinical data. Finally, a multivariate prediction model based on nomogram to predict the severity of ILD is established by combining multiple typical lesions. RESULTS: Experimental results showed that three lesions of HC, RO, and GGO could accurately predict ILD staging independently or combined with other HRCT features. Based on the HRCT, the used multivariate model can achieve the highest AUC value of 0.755 for HC, and the lowest AUC value of 0.701 for RO in stage I, and obtain the highest AUC value of 0.803 for HC, and the lowest AUC value of 0.733 for RO in stage II. Additionally, our ILD scoring model could achieve an average accuracy of 0.812 (0.736 - 0.888) in predicting the severity of ILD via cross-validation. CONCLUSIONS: In summary, our proposed method provides effective segmentation of ILD lesions by a comprehensive deep-learning approach and confirms its potential effectiveness in improving diagnostic accuracy for clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
JamesPei应助布熙哆采纳,获得10
1秒前
x魏发布了新的文献求助30
2秒前
3秒前
4秒前
DAISHU发布了新的文献求助10
4秒前
4秒前
两张发布了新的文献求助10
5秒前
彭于晏应助susu采纳,获得10
6秒前
8秒前
8秒前
8秒前
x魏完成签到,获得积分20
9秒前
huangpeihao完成签到,获得积分10
10秒前
10秒前
10秒前
虾米YYY应助kathy采纳,获得20
10秒前
Riley完成签到,获得积分10
10秒前
10秒前
活力书包完成签到 ,获得积分10
11秒前
DAISHU完成签到,获得积分20
11秒前
12秒前
坚强的虔发布了新的文献求助10
13秒前
lsl完成签到 ,获得积分10
14秒前
810发布了新的文献求助10
14秒前
oceanao应助玫瑰枪杀案_采纳,获得10
14秒前
丘比特应助蓝莓椰丝脆采纳,获得10
14秒前
wsysweet发布了新的文献求助10
16秒前
16秒前
张张发布了新的文献求助10
16秒前
卜乌完成签到,获得积分10
16秒前
大个应助小杰采纳,获得10
17秒前
18秒前
18秒前
美满一曲发布了新的文献求助10
19秒前
hhh完成签到,获得积分20
19秒前
黄鼠狼发布了新的文献求助10
22秒前
Hans发布了新的文献求助10
22秒前
桔子不笑完成签到 ,获得积分10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160420
求助须知:如何正确求助?哪些是违规求助? 2811548
关于积分的说明 7892779
捐赠科研通 2470529
什么是DOI,文献DOI怎么找? 1315616
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602042