Severity-stratification of interstitial lung disease by deep learning enabled assessment and quantification of lesion indicators from HRCT images

医学 列线图 间质性肺病 多元统计 放射科 阶段(地层学) 多元分析 卷积神经网络 接收机工作特性 内科学 人工智能 计算机科学 机器学习 生物 古生物学
作者
Yexin Lai,Xueyu Liu,Fan Fan Hou,Zhiyong Han,E Linning,Ningling Su,Dianrong Du,Zhichong Wang,Wen Zheng,Yongfei Wu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (2): 323-338 被引量:1
标识
DOI:10.3233/xst-230218
摘要

BACKGROUND: Interstitial lung disease (ILD) represents a group of chronic heterogeneous diseases, and current clinical practice in assessment of ILD severity and progression mainly rely on the radiologist-based visual screening, which greatly restricts the accuracy of disease assessment due to the high inter- and intra-subjective observer variability. OBJECTIVE: To solve these problems, in this work, we propose a deep learning driven framework that can assess and quantify lesion indicators and outcome the prediction of severity of ILD. METHODS: In detail, we first present a convolutional neural network that can segment and quantify five types of lesions including HC, RO, GGO, CONS, and EMPH from HRCT of ILD patients, and then we conduct quantitative analysis to select the features related to ILD based on the segmented lesions and clinical data. Finally, a multivariate prediction model based on nomogram to predict the severity of ILD is established by combining multiple typical lesions. RESULTS: Experimental results showed that three lesions of HC, RO, and GGO could accurately predict ILD staging independently or combined with other HRCT features. Based on the HRCT, the used multivariate model can achieve the highest AUC value of 0.755 for HC, and the lowest AUC value of 0.701 for RO in stage I, and obtain the highest AUC value of 0.803 for HC, and the lowest AUC value of 0.733 for RO in stage II. Additionally, our ILD scoring model could achieve an average accuracy of 0.812 (0.736 - 0.888) in predicting the severity of ILD via cross-validation. CONCLUSIONS: In summary, our proposed method provides effective segmentation of ILD lesions by a comprehensive deep-learning approach and confirms its potential effectiveness in improving diagnostic accuracy for clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ky废品完成签到,获得积分10
刚刚
温暖成风完成签到,获得积分20
刚刚
愉快的语山应助午夜煎饼采纳,获得10
1秒前
浮游应助午夜煎饼采纳,获得10
1秒前
GGWEN完成签到,获得积分10
2秒前
英俊的铭应助黄文龙采纳,获得10
2秒前
2秒前
方梓言完成签到 ,获得积分20
3秒前
帅帅子发布了新的文献求助10
3秒前
Sandro完成签到,获得积分10
3秒前
谨慎的草丛完成签到,获得积分10
3秒前
3秒前
3秒前
奋斗幻姬完成签到,获得积分10
4秒前
玛卡巴卡发布了新的文献求助10
4秒前
tongitian发布了新的文献求助10
4秒前
lan发布了新的文献求助10
4秒前
4秒前
4秒前
Dawn完成签到,获得积分10
5秒前
5秒前
桐桐应助不知道起什么好采纳,获得10
6秒前
凯文发布了新的文献求助10
6秒前
勤恳的天亦应助zzzz采纳,获得20
6秒前
等乙天发布了新的文献求助10
6秒前
wangsy发布了新的文献求助10
7秒前
7秒前
Yan完成签到,获得积分10
8秒前
赘婿应助马宝强采纳,获得10
8秒前
细腻的青柏发布了新的文献求助200
8秒前
怕黑寻双完成签到,获得积分10
8秒前
9秒前
研友_VZG7GZ应助violet采纳,获得10
9秒前
9秒前
刘旭发布了新的文献求助10
9秒前
10秒前
张张张发布了新的文献求助10
10秒前
泉水叮咚完成签到,获得积分10
10秒前
xcc发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885327
求助须知:如何正确求助?哪些是违规求助? 4170219
关于积分的说明 12940950
捐赠科研通 3931044
什么是DOI,文献DOI怎么找? 2156822
邀请新用户注册赠送积分活动 1175208
关于科研通互助平台的介绍 1079841