亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Severity-stratification of interstitial lung disease by deep learning enabled assessment and quantification of lesion indicators from HRCT images

医学 列线图 间质性肺病 多元统计 放射科 阶段(地层学) 多元分析 卷积神经网络 接收机工作特性 内科学 人工智能 计算机科学 机器学习 生物 古生物学
作者
Yexin Lai,Xueyu Liu,Fan Fan Hou,Zhiyong Han,E Linning,Ningling Su,Dianrong Du,Zhichong Wang,Wen Zheng,Yongfei Wu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (2): 323-338 被引量:1
标识
DOI:10.3233/xst-230218
摘要

BACKGROUND: Interstitial lung disease (ILD) represents a group of chronic heterogeneous diseases, and current clinical practice in assessment of ILD severity and progression mainly rely on the radiologist-based visual screening, which greatly restricts the accuracy of disease assessment due to the high inter- and intra-subjective observer variability. OBJECTIVE: To solve these problems, in this work, we propose a deep learning driven framework that can assess and quantify lesion indicators and outcome the prediction of severity of ILD. METHODS: In detail, we first present a convolutional neural network that can segment and quantify five types of lesions including HC, RO, GGO, CONS, and EMPH from HRCT of ILD patients, and then we conduct quantitative analysis to select the features related to ILD based on the segmented lesions and clinical data. Finally, a multivariate prediction model based on nomogram to predict the severity of ILD is established by combining multiple typical lesions. RESULTS: Experimental results showed that three lesions of HC, RO, and GGO could accurately predict ILD staging independently or combined with other HRCT features. Based on the HRCT, the used multivariate model can achieve the highest AUC value of 0.755 for HC, and the lowest AUC value of 0.701 for RO in stage I, and obtain the highest AUC value of 0.803 for HC, and the lowest AUC value of 0.733 for RO in stage II. Additionally, our ILD scoring model could achieve an average accuracy of 0.812 (0.736 - 0.888) in predicting the severity of ILD via cross-validation. CONCLUSIONS: In summary, our proposed method provides effective segmentation of ILD lesions by a comprehensive deep-learning approach and confirms its potential effectiveness in improving diagnostic accuracy for clinicians.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiu完成签到,获得积分10
刚刚
完美世界应助科研通管家采纳,获得10
4秒前
清飏应助科研通管家采纳,获得30
4秒前
Orange应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
yyds应助科研通管家采纳,获得80
4秒前
周大福完成签到 ,获得积分10
9秒前
ccc完成签到 ,获得积分10
13秒前
wxyshare应助ZYP采纳,获得10
17秒前
30秒前
安详的从筠完成签到,获得积分10
37秒前
赵方赢发布了新的文献求助10
37秒前
41秒前
量子星尘发布了新的文献求助10
45秒前
赵方赢完成签到,获得积分20
45秒前
caca完成签到,获得积分0
48秒前
57秒前
美国giao哥完成签到,获得积分10
57秒前
ladder发布了新的文献求助10
1分钟前
领导范儿应助ladder采纳,获得10
1分钟前
1分钟前
科研通AI6应助赵方赢采纳,获得10
1分钟前
纸鹤发布了新的文献求助10
1分钟前
1分钟前
drlanlan发布了新的文献求助10
1分钟前
今后应助鹏哥爱科研采纳,获得10
1分钟前
natmed应助ZYP采纳,获得10
1分钟前
1分钟前
1分钟前
纸鹤发布了新的文献求助10
1分钟前
陶醉的羞花完成签到 ,获得积分10
1分钟前
顏泰楊完成签到,获得积分10
1分钟前
清飏应助科研通管家采纳,获得30
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
清飏应助科研通管家采纳,获得30
2分钟前
清飏应助科研通管家采纳,获得30
2分钟前
清飏应助科研通管家采纳,获得30
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644645
求助须知:如何正确求助?哪些是违规求助? 4764785
关于积分的说明 15025394
捐赠科研通 4802996
什么是DOI,文献DOI怎么找? 2567787
邀请新用户注册赠送积分活动 1525416
关于科研通互助平台的介绍 1484942