Learning-Based Optimal Cooperative Formation Tracking Control for Multiple UAVs: A Feedforward-Feedback Design Framework

前馈 控制理论(社会学) 反推 计算机科学 跟踪(教育) 强化学习 控制工程 最优控制 跟踪误差 控制器(灌溉) 控制(管理) 自适应控制 数学优化 工程类 人工智能 数学 教育学 生物 农学 心理学
作者
Boyang Zhang,Maolong Lv,Shaohua Cui,Xiangwei Bu,Ju H. Park
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:2
标识
DOI:10.1109/tase.2023.3322028
摘要

Notwithstanding the successful design of state-of-the-art cooperative control protocols to accomplish formation tracking for multiple unmanned aerial vehicles (UAVs), the assurance of performance optimality cannot be guaranteed in the face of complex disturbances affecting these multi-UAV systems. In order to surmount this challenge, this research endeavor aims to establish a feedforward-feedback learning-based optimal control methodology to facilitate cooperative UAV formation tracking in the presence of intricate disturbances. To be more precise, by leveraging backstepping-based feedback control, the problem of UAV formation tracking is transformed into an equivalent optimal regulation problem. Consequently, a learning-based feedforward control scheme is devised, wherein the cooperative policy iteration algorithm is formulated based on a two-player zero-sum game. The critic-only echo state network (ESN) is employed to approximate the optimal feedforward control policies, with the inclusion of an online adaptive tuning law and compensation terms to alleviate the persistence of excitation condition and eliminate the need for an initial admissible control. As a result, the closed-loop stability is guaranteed in terms of uniformly ultimately boundedness for tracking errors and ESN weights. Note to Practitioners —In real-world scenarios, the flight of multiple UAVs is invariably affected by intricate disturbances, resulting in compromised tracking precision. There is an urgent need to enhance resistance to disturbances and ensure optimal performance for cooperative formation tracking of multiple UAVs. Beyond the capabilities of model-based controllers, the integration of reinforcement learning has shown promise in achieving robust control actions. By introducing the cooperative policy iteration algorithm based on a two-player zero-sum game, the tracking performances of UAV formation can be further optimized. In order to facilitate the practical application of reinforcement learning in UAV systems, our proposed algorithm addresses the persistency of excitation condition by incorporating innovative compensation terms into the ESN tuning law. Furthermore, we resolve the requirement for initial admissible control by introducing a novel piecewise compensation term into the ESN tuning law, which is based on a newly proposed Lyapunov function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林海雨完成签到,获得积分10
刚刚
胖子东发布了新的文献求助10
刚刚
任性的梦菲完成签到,获得积分10
刚刚
1秒前
江小苔发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
情怀应助shenghaowen采纳,获得10
6秒前
renhu发布了新的文献求助10
7秒前
xiaoxiao发布了新的文献求助10
8秒前
8秒前
Tammy发布了新的文献求助10
8秒前
9秒前
fffff发布了新的文献求助20
11秒前
cjjwei完成签到 ,获得积分10
11秒前
oyc发布了新的文献求助10
13秒前
mo72090完成签到,获得积分10
15秒前
Jasper应助牛肉汉堡采纳,获得10
15秒前
乐乐发布了新的文献求助10
16秒前
17秒前
小兔子完成签到,获得积分10
17秒前
苏大壮实完成签到 ,获得积分10
18秒前
可爱的函函应助song采纳,获得10
19秒前
19秒前
搜集达人应助科研小白采纳,获得10
21秒前
21秒前
无奈满天发布了新的文献求助10
22秒前
23秒前
oyc完成签到,获得积分10
23秒前
24秒前
搜集达人应助hqq采纳,获得10
24秒前
DoLaso发布了新的文献求助10
25秒前
26秒前
27秒前
28秒前
奋斗访天完成签到,获得积分10
28秒前
zhong发布了新的文献求助10
29秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701298
求助须知:如何正确求助?哪些是违规求助? 3251633
关于积分的说明 9875391
捐赠科研通 2963587
什么是DOI,文献DOI怎么找? 1625189
邀请新用户注册赠送积分活动 769908
科研通“疑难数据库(出版商)”最低求助积分说明 742593