Mean-Shift Shape Formation of Multi-Robot Systems Without Target Assignment

机器人 计算机科学 均值漂移 人工智能 计算机视觉 模式识别(心理学)
作者
Yunjie Zhang,Rui Zhou,Xing Li,Guibin Sun
出处
期刊:IEEE robotics and automation letters 卷期号:9 (2): 1772-1779
标识
DOI:10.1109/lra.2024.3349926
摘要

The methods of shape formation in robot swarms are usually classified into two categories by whether assignment is used or not. The first is to use target assignment to assemble precise formation. However, the additional algorithm for re-assignment is required to handle unreasonable situations, which results in lower efficiency. The second, also called assignment-free method, is to use local behaviors to assemble formation, however, existing methods can rarely achieve the precise formation. In this letter, we present a distributed assignment-free algorithm to achieve the precise shape formation based on the mean-shift algorithm. Specifically, each target location in robot's perception range is equally regarded as a point of the mean-shift vector. Then, the weight value of each point is computed according to the density of the target location. Here, each robot obtains the density of the target location according to the distribution of its neighbors. Moreover, this density calculation also considers the states of non-neighboring robots via the hop-count algorithm, thus avoiding conflicts among robots. Subsequently, each robot can regard the calculated mean-shift vector as its control command. Finally, simulation results show that our algorithm can form precise shapes at least 8 times more efficient than the assignment-based approach and physical experiment results confirm that the proposed algorithm exhibits promising potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余额12138完成签到,获得积分10
1秒前
沉默的莞发布了新的文献求助10
2秒前
研友_wZrxbL发布了新的文献求助20
2秒前
无名老大应助虞无声采纳,获得50
2秒前
3秒前
3秒前
4秒前
无名老大应助hyd1640采纳,获得50
5秒前
CaoBoyue完成签到 ,获得积分10
6秒前
6秒前
所所应助端庄的冰枫采纳,获得10
7秒前
8秒前
acutelily发布了新的文献求助10
8秒前
JT发布了新的文献求助10
9秒前
YXF应助奥特曼采纳,获得10
10秒前
song发布了新的文献求助10
11秒前
11秒前
OnMyWorldside发布了新的文献求助10
12秒前
斯文败类应助san行采纳,获得10
12秒前
ff55166发布了新的文献求助10
14秒前
Lucas应助Jeff采纳,获得10
14秒前
二不想开根号完成签到 ,获得积分10
14秒前
SciGPT应助笑颜采纳,获得10
15秒前
充电宝应助ff采纳,获得10
15秒前
Sun_Chen完成签到,获得积分10
15秒前
hyd1640完成签到,获得积分10
15秒前
15秒前
李大爷的科研完成签到,获得积分10
15秒前
道友且慢完成签到,获得积分10
16秒前
17秒前
乐天林完成签到 ,获得积分10
17秒前
17秒前
18秒前
YU发布了新的文献求助10
19秒前
19秒前
美满的砖头完成签到 ,获得积分10
20秒前
OnMyWorldside完成签到,获得积分10
21秒前
所所应助song采纳,获得10
21秒前
22秒前
shenzhou9发布了新的文献求助10
23秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3414346
求助须知:如何正确求助?哪些是违规求助? 3016425
关于积分的说明 8876599
捐赠科研通 2704273
什么是DOI,文献DOI怎么找? 1482596
科研通“疑难数据库(出版商)”最低求助积分说明 685467
邀请新用户注册赠送积分活动 680251