Privacy-preserving clustering federated learning for non-IID data

计算机科学 聚类分析 差别隐私 背景(考古学) 联合学习 个性化 趋同(经济学) 数据挖掘 分布式计算 机器学习 万维网 经济增长 生物 古生物学 经济
作者
Guixun Luo,Naiyue Chen,Jiahuan He,Bingwei Jin,Zhiyuan Zhang,Yidong Li
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:154: 384-395 被引量:2
标识
DOI:10.1016/j.future.2024.01.005
摘要

With the increasing number of intelligent devices joining into the Internet of Things (IoT), traditional centralized learning struggles to meet the performance requirements of terminal time-critical systems under heterogeneous data distribution. This challenge arises from the non-independent and non-identically distributed nature of data on terminal devices in real-world scenarios, which impacts the overall model convergence speed and terminal performance. As federated learning provides a privacy-preserving collaborative training framework, this paper focuses on the studying of the time response and performance issues in the context of data heterogeneity. In this paper, we propose a lightweight Randomized Response (RR) differential privacy method to protect the distribution characteristics of clients' data while quantifying their similarity. The paper introduces a community detection algorithm with linear time complexity to divide clients into clusters, which addresses inherent non-IID challenges in federated learning and meeting the rapid response requirements of time-critical systems. We conduct experiments on scenarios with different data distribution scenarios. The results show that the privacy-preserving mechanism has a negligible impact on model accuracy, and our algorithm demonstrates significant performance improvements in personalization compared to baseline methods. Additionally, in the presence of partially disconnected clients during training, compared to solo training, the pp-CFL algorithm enhances the timeliness and accuracy of the personalized local model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wakkkkk完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
卓聪健完成签到,获得积分10
4秒前
FashionBoy应助犹豫帆布鞋采纳,获得10
5秒前
天天快乐应助魏一刀采纳,获得10
6秒前
ding应助礽粥粥采纳,获得10
7秒前
8秒前
9秒前
9秒前
10秒前
小田应助王开晙采纳,获得10
12秒前
bofu发布了新的文献求助10
13秒前
jinghong完成签到 ,获得积分10
14秒前
15秒前
15秒前
17秒前
19秒前
魏一刀发布了新的文献求助10
20秒前
bofu发布了新的文献求助10
20秒前
21秒前
22秒前
CipherSage应助一一采纳,获得10
22秒前
万能图书馆应助我是三三采纳,获得10
24秒前
热闹的冬天完成签到,获得积分10
25秒前
博修发布了新的文献求助30
25秒前
an完成签到 ,获得积分10
26秒前
bofu发布了新的文献求助10
26秒前
28秒前
烟花应助qianlan采纳,获得10
29秒前
29秒前
31秒前
31秒前
bofu发布了新的文献求助10
32秒前
hjl90527发布了新的文献求助10
33秒前
姆姆发布了新的文献求助10
33秒前
wwwwwwwwww发布了新的文献求助10
36秒前
bofu发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
39秒前
葱头发布了新的文献求助10
40秒前
充电宝应助泽灵采纳,获得50
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150