已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Privacy-preserving clustering federated learning for non-IID data

计算机科学 聚类分析 差别隐私 背景(考古学) 联合学习 个性化 趋同(经济学) 数据挖掘 分布式计算 机器学习 万维网 古生物学 经济 生物 经济增长
作者
Guixun Luo,Naiyue Chen,Jiahuan He,Bingwei Jin,Zhiyuan Zhang,Yidong Li
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:154: 384-395 被引量:2
标识
DOI:10.1016/j.future.2024.01.005
摘要

With the increasing number of intelligent devices joining into the Internet of Things (IoT), traditional centralized learning struggles to meet the performance requirements of terminal time-critical systems under heterogeneous data distribution. This challenge arises from the non-independent and non-identically distributed nature of data on terminal devices in real-world scenarios, which impacts the overall model convergence speed and terminal performance. As federated learning provides a privacy-preserving collaborative training framework, this paper focuses on the studying of the time response and performance issues in the context of data heterogeneity. In this paper, we propose a lightweight Randomized Response (RR) differential privacy method to protect the distribution characteristics of clients' data while quantifying their similarity. The paper introduces a community detection algorithm with linear time complexity to divide clients into clusters, which addresses inherent non-IID challenges in federated learning and meeting the rapid response requirements of time-critical systems. We conduct experiments on scenarios with different data distribution scenarios. The results show that the privacy-preserving mechanism has a negligible impact on model accuracy, and our algorithm demonstrates significant performance improvements in personalization compared to baseline methods. Additionally, in the presence of partially disconnected clients during training, compared to solo training, the pp-CFL algorithm enhances the timeliness and accuracy of the personalized local model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzO发布了新的文献求助10
2秒前
穆振家完成签到,获得积分10
3秒前
云是完成签到 ,获得积分10
5秒前
6秒前
6秒前
神经脊柱与周围神经完成签到,获得积分10
6秒前
滾滾完成签到,获得积分10
9秒前
星辰大海应助jjy采纳,获得10
10秒前
13秒前
Lucas应助风中的丝袜采纳,获得10
16秒前
科研通AI6应助风中的丝袜采纳,获得10
16秒前
晁子枫完成签到 ,获得积分10
17秒前
你嵙这个期刊没买完成签到,获得积分10
17秒前
谢绍博发布了新的文献求助10
19秒前
21秒前
21秒前
green发布了新的文献求助10
25秒前
风未见的曾经完成签到 ,获得积分10
26秒前
26秒前
王小杰完成签到 ,获得积分10
27秒前
WCC应助fan采纳,获得10
27秒前
28秒前
深情安青应助yunshui采纳,获得30
28秒前
29秒前
思源应助dan采纳,获得10
30秒前
30秒前
木昆完成签到 ,获得积分10
30秒前
厚朴大师完成签到,获得积分10
31秒前
31秒前
乾坤侠客LW完成签到,获得积分10
32秒前
34秒前
LiLi完成签到 ,获得积分10
35秒前
左左曦完成签到,获得积分10
35秒前
小海发布了新的文献求助10
36秒前
我是老大应助谢绍博采纳,获得10
37秒前
松林发布了新的文献求助10
38秒前
zhangyue7777完成签到,获得积分10
39秒前
XL神放完成签到 ,获得积分10
40秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482161
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388474
捐赠科研通 4511969
什么是DOI,文献DOI怎么找? 2472656
邀请新用户注册赠送积分活动 1458923
关于科研通互助平台的介绍 1432309