Strain-Induced Phase Separation and Mechanomodulation of Ionic Conduction in Anisotropic Nanocomposite Ionogels

材料科学 纳米复合材料 纳米棒 各向同性 离子键合 复合材料 相(物质) 离子电导率 各向异性 微观结构 极限抗拉强度 模数 离子液体 纳米技术 离子 电解质 物理化学 电极 有机化学 物理 催化作用 量子力学 化学 生物化学
作者
Shuaijie Li,Yan Cheng,Hongnan Zhu,Min Xu,Hongying Lv,Zhuoer Wang,Guoming Liu,Hongzan Song
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (10): 13103-13113 被引量:1
标识
DOI:10.1021/acsami.3c19167
摘要

Ionogels have great potential for the development of tissue-like, soft, and stretchable ionotronics. However, conventional isotropic ionogels suffer from poor mechanical properties, low efficient force transmission, and tardy mechanoelectric response, hindering their practical utility. Here, we propose a simple one-step method to fabricate bioinspired anisotropic nanocomposite ionogels based on a combination of strain-induced phase separation and mechanomodulation of ionic conduction in the presence of attapulgite nanorods. These ionogels show high stretchability (747.1% strain), tensile strength (6.42 MPa), Young's modulus (83.49 MPa), and toughness (18.08 MJ/m3). Importantly, the liquid crystalline domain alignment-induced microphase separation and ionic conductivity enhancement during stretching endow these ionogels with an unusual mechanoelectric response and dual-programmable shape-memory properties. Moreover, the anisotropic structure, good elasticity, and unique resistance–strain responsiveness give the ionogel-based strain sensors high sensitivity, rapid response time, excellent fatigue resistance, and unique waveform-discernible strain sensing, which can be applied to real-time monitoring of human motions. The findings offer a promising way to develop bioinspired anisotropic ionogels to modulate the microstructure and properties for practical applications in advanced ionotronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
诚c发布了新的文献求助10
刚刚
自然秋柳完成签到 ,获得积分10
刚刚
我是老大应助经法采纳,获得10
刚刚
默默的皮牙子应助经法采纳,获得10
刚刚
orixero应助经法采纳,获得10
刚刚
小马甲应助经法采纳,获得10
刚刚
柚子成精应助经法采纳,获得10
1秒前
小蘑菇应助经法采纳,获得10
1秒前
深情安青应助经法采纳,获得10
1秒前
李爱国应助经法采纳,获得10
1秒前
共享精神应助经法采纳,获得10
1秒前
yyyyyy完成签到 ,获得积分10
1秒前
LL完成签到,获得积分10
1秒前
ziyiziyi发布了新的文献求助10
2秒前
哈哈哈haha发布了新的文献求助40
2秒前
2秒前
啵乐乐完成签到,获得积分10
3秒前
哈哈完成签到,获得积分20
3秒前
4秒前
logic完成签到,获得积分10
4秒前
岁月轮回发布了新的文献求助10
4秒前
小离发布了新的文献求助10
4秒前
CodeCraft应助艺玲采纳,获得10
4秒前
chenjyuu完成签到,获得积分10
5秒前
韭黄发布了新的文献求助10
5秒前
5秒前
子车雁开完成签到,获得积分10
5秒前
6秒前
6秒前
故意的傲玉应助经法采纳,获得10
7秒前
上官若男应助经法采纳,获得10
7秒前
buno应助经法采纳,获得10
7秒前
1111应助经法采纳,获得10
7秒前
Lucas应助经法采纳,获得10
7秒前
Jasper应助经法采纳,获得10
7秒前
7秒前
习习应助经法采纳,获得10
7秒前
小鱼骑单车应助经法采纳,获得10
7秒前
辰柒发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759