材料科学
纳米复合材料
纳米棒
各向同性
离子键合
复合材料
相(物质)
离子电导率
各向异性
微观结构
极限抗拉强度
模数
离子液体
纳米技术
离子
电解质
物理化学
电极
有机化学
生物化学
化学
物理
量子力学
催化作用
作者
Shuaijie Li,Yan Cheng,Hongnan Zhu,Min Xu,Hongying Lv,Zhuoer Wang,Guoming Liu,Hongzan Song
标识
DOI:10.1021/acsami.3c19167
摘要
Ionogels have great potential for the development of tissue-like, soft, and stretchable ionotronics. However, conventional isotropic ionogels suffer from poor mechanical properties, low efficient force transmission, and tardy mechanoelectric response, hindering their practical utility. Here, we propose a simple one-step method to fabricate bioinspired anisotropic nanocomposite ionogels based on a combination of strain-induced phase separation and mechanomodulation of ionic conduction in the presence of attapulgite nanorods. These ionogels show high stretchability (747.1% strain), tensile strength (6.42 MPa), Young's modulus (83.49 MPa), and toughness (18.08 MJ/m3). Importantly, the liquid crystalline domain alignment-induced microphase separation and ionic conductivity enhancement during stretching endow these ionogels with an unusual mechanoelectric response and dual-programmable shape-memory properties. Moreover, the anisotropic structure, good elasticity, and unique resistance–strain responsiveness give the ionogel-based strain sensors high sensitivity, rapid response time, excellent fatigue resistance, and unique waveform-discernible strain sensing, which can be applied to real-time monitoring of human motions. The findings offer a promising way to develop bioinspired anisotropic ionogels to modulate the microstructure and properties for practical applications in advanced ionotronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI