ZeroNLG: Aligning and Autoencoding Domains for Zero-Shot Multimodal and Multilingual Natural Language Generation

零(语言学) 计算机科学 人工智能 自然语言处理 自然语言 自然语言生成 自然(考古学) 弹丸 语言学 材料科学 哲学 考古 冶金 历史
作者
Bang Yang,Fenglin Liu,Yuexian Zou,Xian Wu,Yaowei Wang,David A. Clifton
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (8): 5712-5724 被引量:3
标识
DOI:10.1109/tpami.2024.3371376
摘要

Natural Language Generation (NLG) accepts input data in the form of images, videos, or text and generates corresponding natural language text as output. Existing NLG methods mainly adopt a supervised approach and rely heavily on coupled data-to-text pairs. However, for many targeted scenarios and for non-English languages, sufficient quantities of labeled data are often not available. As a result, it is necessary to collect and label data-text pairs for training, which is both costly and time-consuming. To relax the dependency on labeled data of downstream tasks, we propose an intuitive and effective zero-shot learning framework, ZeroNLG, which can deal with multiple NLG tasks, including image-to-text (image captioning), video-to-text (video captioning), and text-to-text (neural machine translation), across English, Chinese, German, and French within a unified framework. ZeroNLG does not require any labeled downstream pairs for training. During training, ZeroNLG (i) projects different domains (across modalities and languages) to corresponding coordinates in a shared common latent space; (ii) bridges different domains by aligning their corresponding coordinates in this space; and (iii) builds an unsupervised multilingual auto-encoder to learn to generate text by reconstructing the input text given its coordinate in shared latent space. Consequently, during inference, based on the data-to-text pipeline, ZeroNLG can generate target sentences across different languages given the coordinate of input data in the common space. Within this unified framework, given visual (imaging or video) data as input, ZeroNLG can perform zero-shot visual captioning; given textual sentences as input, ZeroNLG can perform zero-shot machine translation. We present the results of extensive experiments on twelve NLG tasks, showing that, without using any labeled downstream pairs for training, ZeroNLG generates high-quality and "believable" outputs and significantly outperforms existing zero-shot methods. Our code and data are available at https://github.com/yangbang18/ZeroNLG .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
han完成签到,获得积分10
刚刚
甜晞完成签到,获得积分10
1秒前
羽婕完成签到,获得积分10
1秒前
1秒前
冷傲的迎南完成签到 ,获得积分10
2秒前
星辰大海应助biang采纳,获得10
2秒前
wwqc完成签到,获得积分0
2秒前
save完成签到,获得积分10
3秒前
4秒前
jiangjiang完成签到 ,获得积分10
4秒前
貔貅完成签到,获得积分10
5秒前
当你老了发布了新的文献求助10
5秒前
LYY完成签到 ,获得积分10
5秒前
万能图书馆应助姜姜采纳,获得10
6秒前
qaplay完成签到 ,获得积分0
7秒前
小魏哥完成签到,获得积分10
7秒前
粗犷的念柏完成签到 ,获得积分10
7秒前
白白完成签到 ,获得积分10
7秒前
脱壳金蝉完成签到,获得积分10
8秒前
只影有你完成签到,获得积分10
8秒前
vikey完成签到 ,获得积分10
9秒前
LSS完成签到,获得积分10
12秒前
xjwang完成签到,获得积分10
14秒前
zzjjww完成签到,获得积分10
15秒前
酷波er应助克拉拉采纳,获得10
15秒前
田様应助XuWh采纳,获得10
15秒前
Rewi_Zhang完成签到,获得积分10
16秒前
文静灵阳完成签到 ,获得积分10
16秒前
开心完成签到,获得积分10
16秒前
applegood完成签到,获得积分10
17秒前
Mp4完成签到 ,获得积分10
18秒前
失眠海云完成签到,获得积分10
19秒前
辣目童子完成签到 ,获得积分10
19秒前
小布完成签到 ,获得积分10
20秒前
平常的仙人掌完成签到,获得积分10
20秒前
RYK完成签到 ,获得积分10
21秒前
lemon完成签到,获得积分10
21秒前
勤恳的嚓茶完成签到,获得积分10
22秒前
夕荀完成签到,获得积分10
22秒前
mmr完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510838
求助须知:如何正确求助?哪些是违规求助? 3093617
关于积分的说明 9217743
捐赠科研通 2787975
什么是DOI,文献DOI怎么找? 1529989
邀请新用户注册赠送积分活动 710646
科研通“疑难数据库(出版商)”最低求助积分说明 706311