材料科学
原位
伤口敷料
自愈
银纳米粒子
静电纺丝
纳米颗粒
伤口愈合
复合材料
生物医学工程
纳米技术
聚合物
外科
医学
物理
替代医学
病理
气象学
作者
Caidan Zhang,Xun Yang,Lidan Yu,Xueshan Chen,Jiakai Zhang,Sai Zhang,Shaohua Wu
标识
DOI:10.1016/j.matdes.2024.112818
摘要
The long-term exposure of skin wounds, especially for those chronic wounds, is commonly accompanied with the bacterial infection, which further holds back the wound healing process. Therefore, it's urgently required to develop the innovative wound dressings with both antibacterial property and healing-promoting function. In this study, a series of novel hydrogel dressings constructed with polyasparthydrazide (PAHy) nanofibers and different concentrations of in-situ synthesized silver nanoparticles (AgNPs) were designed and prepared. It was found that all the PAHy nanofiber hydrogel mats without or with AgNPs exhibited uniform and bead-free nanofibrous structure, and the AgNPs-contained PAHy nanofiber hydrogel mats showed obviously decreased fiber diameters compared with pure PAHy nanofiber hydrogel mat. The mechanical properties of all as-prepared PAHy/AgNPs nanofiber hydrogel mats in the dry condition were significantly larger than those in the wet condition, and appropriate addition of AgNPs could improve the mechanical properties to some extent. The water swelling ratio of different PAHy/AgNPs hydrogel mats were found to be decreased with the increasing of AgNPs content. The nanofiber hydrogel mat prepared with polysuccinimide (PSI) with 0.5 wt% silver nitrate (AgNO3), named as PAHy/AgNPs-0.5 hydrogel mat, displayed a higher cumulative silver release rate (9.4 ± 1.1 %) after 72 h, and it was demonstrated to possess excellent antibacterial rates against E. coli (99.99 %) and S. aureus (99.99 %), and clear inhibition zones with the diameter of 1.0 ± 0.1 mm for E. coli and 5.8 ± 0.3 mm for S. aureus. Importantly, the animal studies showed that the PAHy/AgNPs-0.5 nanofiber hydrogel mat could significantly accelerate the wound healing process by promoting the re-epithelialization and collagen deposition of wound site, which possessed huge potential for serving as advanced dressing materials for the infected wound treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI