Adaptive Stochastic Conjugate Gradient Optimization for Backpropagation Neural Networks

反向传播 共轭梯度法 计算机科学 水准点(测量) 随机梯度下降算法 人工神经网络 超参数 趋同(经济学) 非线性共轭梯度法 最大值和最小值 梯度下降 人工智能 数学优化 机器学习 算法 数学 数学分析 经济 经济增长 地理 大地测量学
作者
Mohamed Hashem,Fadele Ayotunde Alaba,Muhammad Haruna Jumare,Ashraf Osman Ibrahim,Anas W. Abulfaraj
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 33757-33768 被引量:3
标识
DOI:10.1109/access.2024.3370859
摘要

Backpropagation neural networks are commonly utilized to solve complicated issues in various disciplines. However, optimizing their settings remains a significant task. Traditional gradient-based optimization methods, such as stochastic gradient descent (SGD), often exhibit slow convergence and hyperparameter sensitivity. An adaptive stochastic conjugate gradient (ASCG) optimization strategy for backpropagation neural networks is proposed in this research. ASCG combines the advantages of stochastic optimization and conjugate gradient techniques to increase training efficiency and convergence speed. Based on the observed gradients, the algorithm adaptively calculates the learning rate and search direction at each iteration, allowing for quicker convergence and greater generalization. Experimental findings on benchmark datasets show that ASCG optimization outperforms standard optimization techniques regarding convergence time and model performance. The proposed ASCG algorithm provides a viable method for improving the training process of backpropagation neural networks, making them more successful in tackling complicated problems across several domains. As a result, the information for initial seeds formed while the model is being trained grows. The coordinated efforts of ASCG's Conjugate Gradient and ASCG components improve learning and achieve global minima. Our results indicate that our ASCG algorithm achieves 21 percent higher accuracy on the HMT dataset and performs better than existing methods on other datasets(DIR-Lab dataset). The experimentation revealed that the conjugate gradient has an efficiency of 95 percent when utilizing the principal component analysis features, compared to 94 percent when using the correlation heatmap features selection approach with MSE of 0.0678.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohe完成签到,获得积分10
刚刚
1秒前
科研不通完成签到,获得积分10
1秒前
小华完成签到,获得积分10
2秒前
科研通AI5应助Li_KK采纳,获得10
2秒前
风趣觅荷发布了新的文献求助10
4秒前
3434232完成签到,获得积分20
5秒前
科研通AI5应助笑点低怀薇采纳,获得10
6秒前
打打应助亓大大采纳,获得10
6秒前
6秒前
深情白风发布了新的文献求助10
6秒前
7秒前
研友_VZG7GZ应助举个栗子采纳,获得10
7秒前
小周周完成签到,获得积分20
7秒前
英俊的铭应助nicole采纳,获得10
7秒前
Ylinda完成签到,获得积分20
7秒前
8秒前
8秒前
在水一方应助li采纳,获得10
9秒前
9秒前
在水一方应助迟迟采纳,获得30
9秒前
10秒前
CHEN完成签到,获得积分10
11秒前
赟宝宝完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
姜姜不姜就完成签到,获得积分10
12秒前
小周周发布了新的文献求助10
13秒前
gengsumin发布了新的文献求助10
13秒前
Ylinda发布了新的文献求助10
13秒前
驰驰发布了新的文献求助10
13秒前
rosalieshi应助科研通管家采纳,获得30
14秒前
Orange应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
小天应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543997
求助须知:如何正确求助?哪些是违规求助? 3121198
关于积分的说明 9346129
捐赠科研通 2819283
什么是DOI,文献DOI怎么找? 1550110
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713174