已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamically updated semi-supervised change detection network combining cross-supervision and screening algorithms

计算机科学 再培训 算法 变更检测 正规化(语言学) 一致性(知识库) 计算 机器学习 人工智能 数据挖掘 国际贸易 业务
作者
Shiying Yuan,Ruofei Zhong,Cankun Yang,Qingyang Li,Yaxin Dong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:4
标识
DOI:10.1109/tgrs.2024.3369059
摘要

Semi-supervised change detection is increasingly becoming an interesting and challenging topic for the remote sensing image processing community. As the application of deep learning in change detection becomes more and more widespread, there is a growing lack of labeled training data, which substantially limits the practical application of change detection. In order to discuss a more effective semi-supervised change detection approach and to make more reasonable use of the large amount of remote sensing data, we propose a semi-supervised change detection framework in this paper, which utilizes two different networks to cross-supervise and provide information to each other. Unlike most existing semi-supervised change detection, the proposed framework also incorporates a new filtering algorithm to find better pseudo-labels for the retraining of the two networks in the paper. Then, the computation of the loss functions of the two networks is crossed and the two networks are used for Transformer and CNN different learning paradigms, respectively, while simplifying the classical deep collaborative learning for consistency regularization. In addition, we add two markers to record the highest MIoU of training during retraining, and dynamically update the pseudo-labels as the training metrics progressively improve, which significantly improves the training effect. Our approach is tested on public dataset and achieves very good results that effectively demonstrate the effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只冬瓜zZ完成签到 ,获得积分10
刚刚
qianchimo完成签到 ,获得积分10
刚刚
刚刚
刚刚好-LG完成签到,获得积分10
1秒前
万能图书馆应助单薄翠绿采纳,获得10
1秒前
泠泠泠萘完成签到 ,获得积分10
4秒前
酒醉的蝴蝶完成签到 ,获得积分10
4秒前
y2ktwo发布了新的文献求助10
4秒前
西域卧虎完成签到 ,获得积分10
5秒前
histen完成签到 ,获得积分10
6秒前
陈荣完成签到 ,获得积分10
7秒前
9秒前
enheng发布了新的文献求助10
9秒前
9秒前
晴光完成签到 ,获得积分10
9秒前
10秒前
闪闪的梦柏完成签到 ,获得积分10
11秒前
如意竺完成签到,获得积分10
14秒前
14秒前
单薄翠绿发布了新的文献求助10
14秒前
Gao_Z_X完成签到 ,获得积分10
15秒前
火山完成签到,获得积分10
16秒前
17秒前
努力的咩咩完成签到 ,获得积分10
17秒前
Yang发布了新的文献求助10
17秒前
18秒前
18秒前
迷路绿凝发布了新的文献求助10
19秒前
20秒前
希望天下0贩的0应助y2ktwo采纳,获得10
20秒前
Anna完成签到 ,获得积分10
21秒前
wuyouwuyou完成签到,获得积分10
21秒前
Fortune完成签到 ,获得积分20
22秒前
聪明的鹤完成签到 ,获得积分10
23秒前
王唯任发布了新的文献求助10
23秒前
Charon完成签到 ,获得积分10
24秒前
wwmmyy完成签到 ,获得积分10
25秒前
illion1发布了新的文献求助10
25秒前
111发布了新的文献求助10
25秒前
NexusExplorer应助zn采纳,获得10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307154
求助须知:如何正确求助?哪些是违规求助? 2940961
关于积分的说明 8499733
捐赠科研通 2615177
什么是DOI,文献DOI怎么找? 1428712
科研通“疑难数据库(出版商)”最低求助积分说明 663493
邀请新用户注册赠送积分活动 648382